The University of Chicago Header Logo

Connection

Edward Awh to Young Adult

This is a "connection" page, showing publications Edward Awh has written about Young Adult.
Connection Strength

1.450
  1. Decoding chromaticity and luminance from patterns of EEG activity. Psychophysiology. 2021 04; 58(4):e13779.
    View in: PubMed
    Score: 0.086
  2. Covert Attention Increases the Gain of Stimulus-Evoked Population Codes. J Neurosci. 2021 02 24; 41(8):1802-1815.
    View in: PubMed
    Score: 0.085
  3. Multivariate analysis of EEG activity indexes contingent attentional capture. Neuroimage. 2021 02 01; 226:117562.
    View in: PubMed
    Score: 0.084
  4. Covert Spatial Attention Speeds Target Individuation. J Neurosci. 2020 03 25; 40(13):2717-2726.
    View in: PubMed
    Score: 0.080
  5. Alpha-band Activity Tracks the Zoom Lens of Attention. J Cogn Neurosci. 2020 02; 32(2):272-282.
    View in: PubMed
    Score: 0.078
  6. Alpha-band oscillations track the retrieval of precise spatial representations from long-term memory. J Neurophysiol. 2019 08 01; 122(2):539-551.
    View in: PubMed
    Score: 0.076
  7. Spatially Selective Alpha Oscillations Reveal Moment-by-Moment Trade-offs between Working Memory and Attention. J Cogn Neurosci. 2018 02; 30(2):256-266.
    View in: PubMed
    Score: 0.068
  8. Alpha-Band Activity Reveals Spontaneous Representations of Spatial Position in Visual Working Memory. Curr Biol. 2017 Oct 23; 27(20):3216-3223.e6.
    View in: PubMed
    Score: 0.068
  9. Alpha-Band Oscillations Enable Spatially and Temporally Resolved Tracking of Covert Spatial Attention. Psychol Sci. 2017 Jul; 28(7):929-941.
    View in: PubMed
    Score: 0.066
  10. Feature-Selective Attentional Modulations in Human Frontoparietal Cortex. J Neurosci. 2016 08 03; 36(31):8188-99.
    View in: PubMed
    Score: 0.063
  11. The role of context in volitional control of feature-based attention. J Exp Psychol Hum Percept Perform. 2016 Feb; 42(2):213-24.
    View in: PubMed
    Score: 0.059
  12. Induced a rhythms track the content and quality of visual working memory representations with high temporal precision. J Neurosci. 2014 May 28; 34(22):7587-99.
    View in: PubMed
    Score: 0.054
  13. Electrophysiological evidence for failures of item individuation in crowded visual displays. J Cogn Neurosci. 2014 10; 26(10):2298-309.
    View in: PubMed
    Score: 0.053
  14. Evidence for a fixed capacity limit in attending multiple locations. Cogn Affect Behav Neurosci. 2014 Mar; 14(1):62-77.
    View in: PubMed
    Score: 0.053
  15. A common discrete resource for visual working memory and visual search. Psychol Sci. 2013 Jun; 24(6):929-38.
    View in: PubMed
    Score: 0.050
  16. A neural measure of precision in visual working memory. J Cogn Neurosci. 2013 May; 25(5):754-61.
    View in: PubMed
    Score: 0.049
  17. Selection and storage of perceptual groups is constrained by a discrete resource in working memory. J Exp Psychol Hum Percept Perform. 2013 Jun; 39(3):824-835.
    View in: PubMed
    Score: 0.048
  18. Increased sensitivity to perceptual interference in adults with attention deficit hyperactivity disorder. J Int Neuropsychol Soc. 2012 May; 18(3):511-20.
    View in: PubMed
    Score: 0.046
  19. Polymorphisms in the 5-HTTLPR gene mediate storage capacity of visual working memory. J Cogn Neurosci. 2012 05; 24(5):1069-76.
    View in: PubMed
    Score: 0.046
  20. Precision in visual working memory reaches a stable plateau when individual item limits are exceeded. J Neurosci. 2011 Jan 19; 31(3):1128-38.
    View in: PubMed
    Score: 0.043
  21. Discrete resource allocation in visual working memory. J Exp Psychol Hum Percept Perform. 2009 Oct; 35(5):1359-67.
    View in: PubMed
    Score: 0.039
  22. Controlling the Flow of Distracting Information in Working Memory. Cereb Cortex. 2021 06 10; 31(7):3323-3337.
    View in: PubMed
    Score: 0.022
  23. Spatially Guided Distractor Suppression during Visual Search. J Neurosci. 2021 04 07; 41(14):3180-3191.
    View in: PubMed
    Score: 0.022
  24. Perturbing Neural Representations of Working Memory with Task-irrelevant Interruption. J Cogn Neurosci. 2020 03; 32(3):558-569.
    View in: PubMed
    Score: 0.020
  25. Real-time triggering reveals concurrent lapses of attention and working memory. Nat Hum Behav. 2019 08; 3(8):808-816.
    View in: PubMed
    Score: 0.019
  26. Contralateral Delay Activity Indexes Working Memory Storage, Not the Current Focus of Spatial Attention. J Cogn Neurosci. 2018 08; 30(8):1185-1196.
    View in: PubMed
    Score: 0.018
  27. The capacity to detect synchronous audiovisual events is severely limited: Evidence from mixture modeling. J Exp Psychol Hum Percept Perform. 2016 12; 42(12):2115-2124.
    View in: PubMed
    Score: 0.016
  28. Working memory delay activity predicts individual differences in cognitive abilities. J Cogn Neurosci. 2015 May; 27(5):853-65.
    View in: PubMed
    Score: 0.014
  29. Working memory and fluid intelligence: capacity, attention control, and secondary memory retrieval. Cogn Psychol. 2014 Jun; 71:1-26.
    View in: PubMed
    Score: 0.013
  30. The capacity of audiovisual integration is limited to one item. Psychol Sci. 2013 Mar 01; 24(3):345-51.
    View in: PubMed
    Score: 0.012
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.