Loading...
The University of Chicago Header Logo
Keywords
Last Name
Institution

Connection

Kunio Doi to Lung Neoplasms

This is a "connection" page, showing publications Kunio Doi has written about Lung Neoplasms.

 
Connection Strength
 
 
 
4.486
 
  1. Hayashi N, Taniguchi A, Noto K, Shimosegawa M, Ogura T, Doi K. [Development of a digital chest phantom for studies on energy subtraction techniques]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2014 Mar; 70(3):191-8.
    View in: PubMed
    Score: 0.222
  2. Li F, Hara T, Shiraishi J, Engelmann R, MacMahon H, Doi K. Improved detection of subtle lung nodules by use of chest radiographs with bone suppression imaging: receiver operating characteristic analysis with and without localization. AJR Am J Roentgenol. 2011 May; 196(5):W535-41.
    View in: PubMed
    Score: 0.182
  3. Kasai S, Li F, Shiraishi J, Doi K. Usefulness of computer-aided diagnosis schemes for vertebral fractures and lung nodules on chest radiographs. AJR Am J Roentgenol. 2008 Jul; 191(1):260-5.
    View in: PubMed
    Score: 0.150
  4. Li Q, Li F, Doi K. Computerized detection of lung nodules in thin-section CT images by use of selective enhancement filters and an automated rule-based classifier. Acad Radiol. 2008 Feb; 15(2):165-75.
    View in: PubMed
    Score: 0.145
  5. Sakai S, Yabuuchi H, Matsuo Y, Okafuji T, Kamitani T, Honda H, Yamamoto K, Fujiwara K, Sugiyama N, Doi K. Integration of temporal subtraction and nodule detection system for digital chest radiographs into picture archiving and communication system (PACS): four-year experience. J Digit Imaging. 2008 Mar; 21(1):91-8.
    View in: PubMed
    Score: 0.136
  6. Shiraishi J, Li F, Doi K. Computer-aided diagnosis for improved detection of lung nodules by use of posterior-anterior and lateral chest radiographs. Acad Radiol. 2007 Jan; 14(1):28-37.
    View in: PubMed
    Score: 0.135
  7. Sakai S, Soeda H, Takahashi N, Okafuji T, Yoshitake T, Yabuuchi H, Yoshino I, Yamamoto K, Honda H, Doi K. Computer-aided nodule detection on digital chest radiography: validation test on consecutive T1 cases of resectable lung cancer. J Digit Imaging. 2006 Dec; 19(4):376-82.
    View in: PubMed
    Score: 0.134
  8. Li F, Li Q, Engelmann R, Aoyama M, Sone S, MacMahon H, Doi K. Improving radiologists' recommendations with computer-aided diagnosis for management of small nodules detected by CT. Acad Radiol. 2006 Aug; 13(8):943-50.
    View in: PubMed
    Score: 0.131
  9. Shiraishi J, Abe H, Li F, Engelmann R, MacMahon H, Doi K. Computer-aided diagnosis for the detection and classification of lung cancers on chest radiographs ROC analysis of radiologists' performance. Acad Radiol. 2006 Aug; 13(8):995-1003.
    View in: PubMed
    Score: 0.131
  10. Nie Y, Li Q, Li F, Pu Y, Appelbaum D, Doi K. Integrating PET and CT information to improve diagnostic accuracy for lung nodules: A semiautomatic computer-aided method. J Nucl Med. 2006 Jul; 47(7):1075-80.
    View in: PubMed
    Score: 0.130
  11. Shiraishi J, Li Q, Suzuki K, Engelmann R, Doi K. Computer-aided diagnostic scheme for the detection of lung nodules on chest radiographs: localized search method based on anatomical classification. Med Phys. 2006 Jul; 33(7):2642-53.
    View in: PubMed
    Score: 0.130
  12. Li F, Arimura H, Suzuki K, Shiraishi J, Li Q, Abe H, Engelmann R, Sone S, MacMahon H, Doi K. Computer-aided detection of peripheral lung cancers missed at CT: ROC analyses without and with localization. Radiology. 2005 Nov; 237(2):684-90.
    View in: PubMed
    Score: 0.124
  13. Li Q, Li F, Suzuki K, Shiraishi J, Abe H, Engelmann R, Nie Y, MacMahon H, Doi K. Computer-aided diagnosis in thoracic CT. Semin Ultrasound CT MR. 2005 Oct; 26(5):357-63.
    View in: PubMed
    Score: 0.124
  14. Suzuki K, Li F, Sone S, Doi K. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging. 2005 Sep; 24(9):1138-50.
    View in: PubMed
    Score: 0.123
  15. Suzuki K, Shiraishi J, Abe H, MacMahon H, Doi K. False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network. Acad Radiol. 2005 Feb; 12(2):191-201.
    View in: PubMed
    Score: 0.118
  16. Kato A, Suzuki M, Karasawa Y, Sugimoto T, Doi K. Histopathological study of time course changes in PTHrP-induced incisor lesions of rats. Toxicol Pathol. 2005; 33(2):230-8.
    View in: PubMed
    Score: 0.117
  17. Abe H, Ishida T, Shiraishi J, Li F, Katsuragawa S, Sone S, Macmahon H, Doi K. Effect of temporal subtraction images on radiologists' detection of lung cancer on CT: results of the observer performance study with use of film computed tomography images. Acad Radiol. 2004 Dec; 11(12):1337-43.
    View in: PubMed
    Score: 0.117
  18. Li F, Aoyama M, Shiraishi J, Abe H, Li Q, Suzuki K, Engelmann R, Sone S, Macmahon H, Doi K. Radiologists' performance for differentiating benign from malignant lung nodules on high-resolution CT using computer-estimated likelihood of malignancy. AJR Am J Roentgenol. 2004 Nov; 183(5):1209-15.
    View in: PubMed
    Score: 0.116
  19. Li F, Sone S, Abe H, Macmahon H, Doi K. Malignant versus benign nodules at CT screening for lung cancer: comparison of thin-section CT findings. Radiology. 2004 Dec; 233(3):793-8.
    View in: PubMed
    Score: 0.116
  20. Arimura H, Katsuragawa S, Suzuki K, Li F, Shiraishi J, Sone S, Doi K. Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening. Acad Radiol. 2004 Jun; 11(6):617-29.
    View in: PubMed
    Score: 0.113
  21. Okazaki H, Nakamura K, Watanabe H, Matsuki Y, Uozumi T, Kakeda S, Kamada K, Oda N, Nakata H, Katsuragawa S, Doi K. Improved detection of lung cancer arising in diffuse lung diseases on chest radiographs using temporal subtraction. Acad Radiol. 2004 May; 11(5):498-505.
    View in: PubMed
    Score: 0.112
  22. Li F, Sone S, Abe H, MacMahon H, Doi K. Low-dose computed tomography screening for lung cancer in a general population: characteristics of cancer in non-smokers versus smokers. Acad Radiol. 2003 Sep; 10(9):1013-20.
    View in: PubMed
    Score: 0.107
  23. Li Q, Sone S, Doi K. Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans. Med Phys. 2003 Aug; 30(8):2040-51.
    View in: PubMed
    Score: 0.106
  24. Shiraishi J, Abe H, Engelmann R, Aoyama M, MacMahon H, Doi K. Computer-aided diagnosis to distinguish benign from malignant solitary pulmonary nodules on radiographs: ROC analysis of radiologists' performance--initial experience. Radiology. 2003 May; 227(2):469-74.
    View in: PubMed
    Score: 0.105
  25. Li F, Sone S, Abe H, MacMahon H, Armato SG, Doi K. Lung cancers missed at low-dose helical CT screening in a general population: comparison of clinical, histopathologic, and imaging findings. Radiology. 2002 Dec; 225(3):673-83.
    View in: PubMed
    Score: 0.102
  26. Kakeda S, Nakamura K, Kamada K, Watanabe H, Nakata H, Katsuragawa S, Doi K. Improved detection of lung nodules by using a temporal subtraction technique. Radiology. 2002 Jul; 224(1):145-51.
    View in: PubMed
    Score: 0.099
  27. Arimura H, Katsuragawa S, Li Q, Ishida T, Doi K. Development of a computerized method for identifying the posteroanterior and lateral views of chest radiographs by use of a template matching technique. Med Phys. 2002 Jul; 29(7):1556-61.
    View in: PubMed
    Score: 0.099
  28. Aoyama M, Li Q, Katsuragawa S, MacMahon H, Doi K. Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images. Med Phys. 2002 May; 29(5):701-8.
    View in: PubMed
    Score: 0.098
  29. Li Q, Katsuragawa S, Doi K. Computer-aided diagnostic scheme for lung nodule detection in digital chest radiographs by use of a multiple-template matching technique. Med Phys. 2001 Oct; 28(10):2070-6.
    View in: PubMed
    Score: 0.094
  30. Uozumi T, Nakamura K, Watanabe H, Nakata H, Katsuragawa S, Doi K. ROC analysis of detection of metastatic pulmonary nodules on digital chest radiographs with temporal subtraction. Acad Radiol. 2001 Sep; 8(9):871-8.
    View in: PubMed
    Score: 0.093
  31. Nakamura K, Yoshida H, Engelmann R, MacMahon H, Katsuragawa S, Ishida T, Ashizawa K, Doi K. Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks. Radiology. 2000 Mar; 214(3):823-30.
    View in: PubMed
    Score: 0.084
  32. Uozumi T, Nakamura K, Takahashi H, Okazaki H, Kamada K, Kakeda S, Nakata H, Oda N, Katsuragawa S, Doi K. [Usefulness of temporal subtraction images of chest computed radiography for detection of metastatic pulmonary nodules]. Nihon Igaku Hoshasen Gakkai Zasshi. 2000 Mar; 60(4):193-8.
    View in: PubMed
    Score: 0.084
  33. Kobayashi T, Xu XW, MacMahon H, Metz CE, Doi K. Effect of a computer-aided diagnosis scheme on radiologists' performance in detection of lung nodules on radiographs. Radiology. 1996 Jun; 199(3):843-8.
    View in: PubMed
    Score: 0.065
  34. Li F, Engelmann R, Pesce LL, Doi K, Metz CE, Macmahon H. Small lung cancers: improved detection by use of bone suppression imaging--comparison with dual-energy subtraction chest radiography. Radiology. 2011 Dec; 261(3):937-49.
    View in: PubMed
    Score: 0.047
  35. Li F, Engelmann R, Doi K, Macmahon H. True detection versus "accidental" detection of small lung cancer by a computer-aided detection (CAD) program on chest radiographs. J Digit Imaging. 2010 Feb; 23(1):66-72.
    View in: PubMed
    Score: 0.040
  36. Li F, Engelmann R, Doi K, MacMahon H. Improved detection of small lung cancers with dual-energy subtraction chest radiography. AJR Am J Roentgenol. 2008 Apr; 190(4):886-91.
    View in: PubMed
    Score: 0.037
  37. Li F, Engelmann R, Metz CE, Doi K, MacMahon H. Lung cancers missed on chest radiographs: results obtained with a commercial computer-aided detection program. Radiology. 2008 Jan; 246(1):273-80.
    View in: PubMed
    Score: 0.036
  38. Li Q, Doi K. Analysis and minimization of overtraining effect in rule-based classifiers for computer-aided diagnosis. Med Phys. 2006 Feb; 33(2):320-8.
    View in: PubMed
    Score: 0.032
  39. Suzuki K, Doi K. How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT? Acad Radiol. 2005 Oct; 12(10):1333-41.
    View in: PubMed
    Score: 0.031
  40. Armato SG, Roy AS, Macmahon H, Li F, Doi K, Sone S, Altman MB. Evaluation of automated lung nodule detection on low-dose computed tomography scans from a lung cancer screening program(1). Acad Radiol. 2005 Mar; 12(3):337-46.
    View in: PubMed
    Score: 0.030
  41. Doi K. Current status and future potential of computer-aided diagnosis in medical imaging. Br J Radiol. 2005; 78 Spec No 1:S3-S19.
    View in: PubMed
    Score: 0.029
  42. Kakeda S, Moriya J, Sato H, Aoki T, Watanabe H, Nakata H, Oda N, Katsuragawa S, Yamamoto K, Doi K. Improved detection of lung nodules on chest radiographs using a commercial computer-aided diagnosis system. AJR Am J Roentgenol. 2004 Feb; 182(2):505-10.
    View in: PubMed
    Score: 0.028
  43. Li Q, Li F, Shiraishi J, Katsuragawa S, Sone S, Doi K. Investigation of new psychophysical measures for evaluation of similar images on thoracic computed tomography for distinction between benign and malignant nodules. Med Phys. 2003 Oct; 30(10):2584-93.
    View in: PubMed
    Score: 0.027
  44. Aoyama M, Li Q, Katsuragawa S, Li F, Sone S, Doi K. Computerized scheme for determination of the likelihood measure of malignancy for pulmonary nodules on low-dose CT images. Med Phys. 2003 Mar; 30(3):387-94.
    View in: PubMed
    Score: 0.026
  45. Armato SG, Li F, Giger ML, MacMahon H, Sone S, Doi K. Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program. Radiology. 2002 Dec; 225(3):685-92.
    View in: PubMed
    Score: 0.025
  46. Matsuki Y, Nakamura K, Watanabe H, Aoki T, Nakata H, Katsuragawa S, Doi K. Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis. AJR Am J Roentgenol. 2002 Mar; 178(3):657-63.
    View in: PubMed
    Score: 0.024
  47. Kawakami K, Yasuda J, Shiraishi M, Kayama T, Doi K, Perucho M, Sekiya T. Detection of DNA abnormalities by arbitrarily primed PCR fingerprinting: allelic losses in chromosome 10q in lung cancers. Biochem Biophys Res Commun. 1998 Oct 09; 251(1):153-7.
    View in: PubMed
    Score: 0.019
  48. Xu XW, Doi K, Kobayashi T, MacMahon H, Giger ML. Development of an improved CAD scheme for automated detection of lung nodules in digital chest images. Med Phys. 1997 Sep; 24(9):1395-403.
    View in: PubMed
    Score: 0.018
  49. Wu YC, Doi K, Giger ML. Detection of lung nodules in digital chest radiographs using artificial neural networks: a pilot study. J Digit Imaging. 1995 May; 8(2):88-94.
    View in: PubMed
    Score: 0.015
  50. Akai Y, Fujimoto S, Sakaguchi Y, Kinokawa I, Hashimoto T, Doi K, Ishikawa H. [Case of HCG producing lung squamous cell carcinoma]. Nihon Naika Gakkai Zasshi. 1994 May 10; 83(5):820-1.
    View in: PubMed
    Score: 0.014
  51. Matsumoto T, Doi K, Kano A, Nakamura H, Nakanishi T. [Evaluation of the potential benefit of computer-aided diagnosis (CAD) for lung cancer screenings using photofluorography: analysis of an observer study]. Nihon Igaku Hoshasen Gakkai Zasshi. 1993 Oct 25; 53(10):1195-207.
    View in: PubMed
    Score: 0.014
  52. Matsumoto T, Yoshimura H, Doi K, Giger ML, Kano A, MacMahon H, Abe K, Montner SM. Image feature analysis of false-positive diagnoses produced by automated detection of lung nodules. Invest Radiol. 1992 Aug; 27(8):587-97.
    View in: PubMed
    Score: 0.012
  53. Matsumoto T, Doi K, Nakamura H, Nakanishi T. [Potential usefulness of computer-aided diagnosis (CAD) in a mass survey for lung cancer using photo-fluorographic films]. Nihon Igaku Hoshasen Gakkai Zasshi. 1992 Apr 25; 52(4):500-2.
    View in: PubMed
    Score: 0.012
  54. Yoshimura H, Giger ML, Doi K, MacMahon H, Montner SM. Computerized scheme for the detection of pulmonary nodules. A nonlinear filtering technique. Invest Radiol. 1992 Feb; 27(2):124-9.
    View in: PubMed
    Score: 0.012
  55. Armato SG, Altman MB, Wilkie J, Sone S, Li F, Doi K, Roy AS. Automated lung nodule classification following automated nodule detection on CT: a serial approach. Med Phys. 2003 Jun; 30(6):1188-97.
    View in: PubMed
    Score: 0.007
  56. Hoffmann KR, MacMahon H, Doi K, Metz CE, Yao L, Abe K. Evaluation of an enhanced digital film-duplication system by receiver operating characteristic analysis. Invest Radiol. 1993 Dec; 28(12):1134-8.
    View in: PubMed
    Score: 0.003
  57. Matsumoto T, Yoshimura H, Giger ML, Doi K, MacMahon H, Montner SM, Nakanishi T. Potential usefulness of computerized nodule detection in screening programs for lung cancer. Invest Radiol. 1992 Jun; 27(6):471-5.
    View in: PubMed
    Score: 0.003
  58. Giger ML, Doi K, MacMahon H, Metz CE, Yin FF. Pulmonary nodules: computer-aided detection in digital chest images. Radiographics. 1990 Jan; 10(1):41-51.
    View in: PubMed
    Score: 0.003
  59. Giger ML, Doi K, MacMahon H. Image feature analysis and computer-aided diagnosis in digital radiography. 3. Automated detection of nodules in peripheral lung fields. Med Phys. 1988 Mar-Apr; 15(2):158-66.
    View in: PubMed
    Score: 0.002
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.