Loading...
The University of Chicago Header Logo
Keywords
Last Name
Institution

Connection

Kunio Doi to Reproducibility of Results

This is a "connection" page, showing publications Kunio Doi has written about Reproducibility of Results.

 
Connection Strength
 
 
 
1.874
 
  1. Takasumi H, Seino S, Kikori K, Ishikawa H, Kanezawa T, Bannae S, Kuhara S, Doi K. Evaluation of the homogeneity of native T1 myocardial mapping using the polarity corrected inversion time preparation method in a myocardial phantom and healthy volunteers. Radiol Phys Technol. 2021 Mar; 14(1):50-56.
    View in: PubMed
    Score: 0.130
  2. Nakamura K, Inokuchi R, Hiruma T, Doi K. Efficacy of continuous veno-venous haemofiltration on transpulmonary thermodilution measurements using the EV1000 system. Anaesth Intensive Care. 2015 Jul; 43(4):541-3.
    View in: PubMed
    Score: 0.089
  3. Shiraishi J, Appelbaum D, Pu Y, Engelmann R, Li Q, Doi K. Clinical utility of temporal subtraction images in successive whole-body bone scans: evaluation in a prospective clinical study. J Digit Imaging. 2011 Aug; 24(4):680-7.
    View in: PubMed
    Score: 0.068
  4. Yamada A, Hara T, Li F, Fujinaga Y, Ueda K, Kadoya M, Doi K. Quantitative evaluation of liver function with use of gadoxetate disodium-enhanced MR imaging. Radiology. 2011 Sep; 260(3):727-33.
    View in: PubMed
    Score: 0.067
  5. Sugimoto K, Shiraishi J, Moriyasu F, Ichimura S, Metoki R, Doi K. Analysis of intrahepatic vascular morphological changes of chronic liver disease for assessment of liver fibrosis stages by micro-flow imaging with contrast-enhanced ultrasound: preliminary experience. Eur Radiol. 2010 Nov; 20(11):2749-57.
    View in: PubMed
    Score: 0.063
  6. Sugimoto K, Shiraishi J, Moriyasu F, Saito K, Doi K. Improved detection of hepatic metastases with contrast-enhanced low mechanical-index pulse inversion ultrasonography during the liver-specific phase of sonazoid: observer performance study with JAFROC analysis. Acad Radiol. 2009 Jul; 16(7):798-809.
    View in: PubMed
    Score: 0.058
  7. Sugimoto K, Shiraishi J, Moriyasu F, Doi K. Computer-aided diagnosis of focal liver lesions by use of physicians' subjective classification of echogenic patterns in baseline and contrast-enhanced ultrasonography. Acad Radiol. 2009 Apr; 16(4):401-11.
    View in: PubMed
    Score: 0.058
  8. Muramatsu C, Li Q, Schmidt RA, Shiraishi J, Doi K. Determination of similarity measures for pairs of mass lesions on mammograms by use of BI-RADS lesion descriptors and image features. Acad Radiol. 2009 Apr; 16(4):443-9.
    View in: PubMed
    Score: 0.058
  9. Li F, Kumazawa S, Shiraishi J, Li Q, Engelmann R, Caligiuri P, MacMahon H, Doi K. Subjective similarity of patterns of diffuse interstitial lung disease on thin-section CT: an observer performance study. Acad Radiol. 2009 Apr; 16(4):477-85.
    View in: PubMed
    Score: 0.058
  10. Kitajima M, Hirai T, Katsuragawa S, Okuda T, Fukuoka H, Sasao A, Akter M, Awai K, Nakayama Y, Ikeda R, Yamashita Y, Yano S, Kuratsu J, Doi K. Differentiation of common large sellar-suprasellar masses effect of artificial neural network on radiologists' diagnosis performance. Acad Radiol. 2009 Mar; 16(3):313-20.
    View in: PubMed
    Score: 0.057
  11. Muramatsu C, Li Q, Schmidt R, Shiraishi J, Doi K. Investigation of psychophysical similarity measures for selection of similar images in the diagnosis of clustered microcalcifications on mammograms. Med Phys. 2008 Dec; 35(12):5695-702.
    View in: PubMed
    Score: 0.056
  12. Kasai S, Li F, Shiraishi J, Doi K. Usefulness of computer-aided diagnosis schemes for vertebral fractures and lung nodules on chest radiographs. AJR Am J Roentgenol. 2008 Jul; 191(1):260-5.
    View in: PubMed
    Score: 0.055
  13. Kumazawa S, Muramatsu C, Li Q, Li F, Shiraishi J, Caligiuri P, Schmidt RA, MacMahon H, Doi K. An investigation of radiologists' perception of lesion similarity: observations with paired breast masses on mammograms and paired lung nodules on CT images. Acad Radiol. 2008 Jul; 15(7):887-94.
    View in: PubMed
    Score: 0.055
  14. Kakeda S, Korogi Y, Arimura H, Hirai T, Katsuragawa S, Aoki T, Doi K. Diagnostic accuracy and reading time to detect intracranial aneurysms on MR angiography using a computer-aided diagnosis system. AJR Am J Roentgenol. 2008 Feb; 190(2):459-65.
    View in: PubMed
    Score: 0.053
  15. Muramatsu C, Li Q, Schmidt RA, Shiraishi J, Suzuki K, Newstead GM, Doi K. Determination of subjective similarity for pairs of masses and pairs of clustered microcalcifications on mammograms: comparison of similarity ranking scores and absolute similarity ratings. Med Phys. 2007 Jul; 34(7):2890-5.
    View in: PubMed
    Score: 0.051
  16. Li Q, Doi K. Comparison of typical evaluation methods for computer-aided diagnostic schemes: Monte Carlo simulation study. Med Phys. 2007 Mar; 34(3):871-6.
    View in: PubMed
    Score: 0.050
  17. Shiraishi J, Li Q, Appelbaum D, Pu Y, Doi K. Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans. Med Phys. 2007 Jan; 34(1):25-36.
    View in: PubMed
    Score: 0.049
  18. Sakai S, Soeda H, Furuya A, Yabuuchi H, Okafuji T, Yamamoto K, Honda H, Doi K. Evaluation of the image quality of temporal subtraction images produced automatically in a PACS environment. J Digit Imaging. 2006 Dec; 19(4):383-90.
    View in: PubMed
    Score: 0.049
  19. Nakayama R, Watanabe R, Namba K, Takeda K, Yamamoto K, Katsuragawa S, Doi K. Computer-aided diagnosis scheme for identifying histological classification of clustered microcalcifications by use of follow-up magnification mammograms. Acad Radiol. 2006 Oct; 13(10):1219-28.
    View in: PubMed
    Score: 0.048
  20. Muramatsu C, Li Q, Schmidt R, Suzuki K, Shiraishi J, Newstead G, Doi K. Experimental determination of subjective similarity for pairs of clustered microcalcifications on mammograms: observer study results. Med Phys. 2006 Sep; 33(9):3460-8.
    View in: PubMed
    Score: 0.048
  21. Suzuki K, Abe H, MacMahon H, Doi K. Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). IEEE Trans Med Imaging. 2006 Apr; 25(4):406-16.
    View in: PubMed
    Score: 0.047
  22. Li Q, Doi K. Reduction of bias and variance for evaluation of computer-aided diagnostic schemes. Med Phys. 2006 Apr; 33(4):868-75.
    View in: PubMed
    Score: 0.047
  23. Li Q, Doi K. Analysis and minimization of overtraining effect in rule-based classifiers for computer-aided diagnosis. Med Phys. 2006 Feb; 33(2):320-8.
    View in: PubMed
    Score: 0.046
  24. Suzuki K, Doi K. How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT? Acad Radiol. 2005 Oct; 12(10):1333-41.
    View in: PubMed
    Score: 0.045
  25. Suzuki K, Li F, Sone S, Doi K. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging. 2005 Sep; 24(9):1138-50.
    View in: PubMed
    Score: 0.045
  26. Muramatsu C, Li Q, Suzuki K, Schmidt RA, Shiraishi J, Newstead GM, Doi K. Investigation of psychophysical measure for evaluation of similar images for mammographic masses: preliminary results. Med Phys. 2005 Jul; 32(7):2295-304.
    View in: PubMed
    Score: 0.044
  27. Nakayama R, Uchiyama Y, Watanabe R, Katsuragawa S, Namba K, Doi K. Computer-aided diagnosis scheme for histological classification of clustered microcalcifications on magnification mammograms. Med Phys. 2004 Apr; 31(4):789-99.
    View in: PubMed
    Score: 0.041
  28. Kakeda S, Moriya J, Sato H, Aoki T, Watanabe H, Nakata H, Oda N, Katsuragawa S, Yamamoto K, Doi K. Improved detection of lung nodules on chest radiographs using a commercial computer-aided diagnosis system. AJR Am J Roentgenol. 2004 Feb; 182(2):505-10.
    View in: PubMed
    Score: 0.040
  29. Uchiyama Y, Katsuragawa S, Abe H, Shiraishi J, Li F, Li Q, Zhang CT, Suzuki K, Doi K. Quantitative computerized analysis of diffuse lung disease in high-resolution computed tomography. Med Phys. 2003 Sep; 30(9):2440-54.
    View in: PubMed
    Score: 0.039
  30. Suzuki K, Armato SG, Li F, Sone S, Doi K. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med Phys. 2003 Jul; 30(7):1602-17.
    View in: PubMed
    Score: 0.039
  31. Aoyama M, Li Q, Katsuragawa S, Li F, Sone S, Doi K. Computerized scheme for determination of the likelihood measure of malignancy for pulmonary nodules on low-dose CT images. Med Phys. 2003 Mar; 30(3):387-94.
    View in: PubMed
    Score: 0.038
  32. Nagel RH, Nishikawa RM, Papaioannou J, Doi K. Analysis of methods for reducing false positives in the automated detection of clustered microcalcifications in mammograms. Med Phys. 1998 Aug; 25(8):1502-6.
    View in: PubMed
    Score: 0.027
  33. Sakai T, Doi K, Yoneyama M, Watanabe A, Miyati T, Yanagawa N. Distortion-free diffusion tensor imaging for evaluation of lumbar nerve roots: Utility of direct coronal single-shot turbo spin-echo diffusion sequence. Magn Reson Imaging. 2018 06; 49:78-85.
    View in: PubMed
    Score: 0.027
  34. Monnier-Cholley L, MacMahon H, Katsuragawa S, Morishita J, Doi K. Computerized analysis of interstitial infiltrates on chest radiographs: a new scheme based on geometric pattern features and Fourier analysis. Acad Radiol. 1995 Jun; 2(6):455-62.
    View in: PubMed
    Score: 0.022
  35. Xu XW, Doi K. Image feature analysis for computer-aided diagnosis: accurate determination of ribcage boundary in chest radiographs. Med Phys. 1995 May; 22(5):617-26.
    View in: PubMed
    Score: 0.022
  36. Muramatsu C, Nishimura K, Endo T, Oiwa M, Shiraiwa M, Doi K, Fujita H. Representation of lesion similarity by use of multidimensional scaling for breast masses on mammograms. J Digit Imaging. 2013 Aug; 26(4):740-7.
    View in: PubMed
    Score: 0.019
  37. Guo W, Li Q, Boyce SJ, McAdams HP, Shiraishi J, Doi K, Samei E. A computerized scheme for lung nodule detection in multiprojection chest radiography. Med Phys. 2012 Apr; 39(4):2001-12.
    View in: PubMed
    Score: 0.018
  38. Wang J, Li F, Doi K, Li Q. Computerized detection of diffuse lung disease in MDCT: the usefulness of statistical texture features. Phys Med Biol. 2009 Nov 21; 54(22):6881-99.
    View in: PubMed
    Score: 0.015
  39. Fukushima A, Ashizawa K, Yamaguchi T, Matsuyama N, Hayashi H, Kida I, Imafuku Y, Egawa A, Kimura S, Nagaoki K, Honda S, Katsuragawa S, Doi K, Hayashi K. Application of an artificial neural network to high-resolution CT: usefulness in differential diagnosis of diffuse lung disease. AJR Am J Roentgenol. 2004 Aug; 183(2):297-305.
    View in: PubMed
    Score: 0.010
  40. Armato SG, Altman MB, Wilkie J, Sone S, Li F, Doi K, Roy AS. Automated lung nodule classification following automated nodule detection on CT: a serial approach. Med Phys. 2003 Jun; 30(6):1188-97.
    View in: PubMed
    Score: 0.010
  41. van Ginneken B, Katsuragawa S, ter Haar Romeny BM, Doi K, Viergever MA. Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Trans Med Imaging. 2002 Feb; 21(2):139-49.
    View in: PubMed
    Score: 0.009
  42. Morishita J, Doi K, Bollen R, Bunch PC, Hoeschen D, Sirand-rey G, Sukenobu Y. Comparison of two methods for accurate measurement of modulation transfer functions of screen-film systems. Med Phys. 1995 Feb; 22(2):193-200.
    View in: PubMed
    Score: 0.005
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.