Loading...
The University of Chicago Header Logo
Keywords
Last Name
Institution

Connection

Kunio Doi to Lung Diseases, Interstitial

This is a "connection" page, showing publications Kunio Doi has written about Lung Diseases, Interstitial.

 
Connection Strength
 
 
 
2.569
 
  1. Li F, Kumazawa S, Shiraishi J, Li Q, Engelmann R, Caligiuri P, MacMahon H, Doi K. Subjective similarity of patterns of diffuse interstitial lung disease on thin-section CT: an observer performance study. Acad Radiol. 2009 Apr; 16(4):477-85.
    View in: PubMed
    Score: 0.299
  2. Ikeda R, Katsuragawa S, Shimonobou T, Hiai Y, Hashida M, Awai K, Yamashita Y, Doi K. [Comparison of LCD and CRT monitors for detection of pulmonary nodules and interstitial lung diseases on digital chest radiographs by using receiver operating characteristic analysis]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2006 May 20; 62(5):734-41.
    View in: PubMed
    Score: 0.245
  3. Ikeda R, Katsuragawa S, Shimonobou T, Hashida M, Yamashita Y, Doi K. [Report on the 90th Scientific Assembly and Annual Meeting of the Radiological Society of North America-- Comparison of LCD and CRT monitors for detection of pulmonary nodules and interstitial lung diseases on digital chest radiographs by using receiver operating characteristic analysis]. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2005 Jul 20; 61(7):974-5.
    View in: PubMed
    Score: 0.232
  4. Abe H, Ashizawa K, Li F, Matsuyama N, Fukushima A, Shiraishi J, MacMahon H, Doi K. Artificial neural networks (ANNs) for differential diagnosis of interstitial lung disease: results of a simulation test with actual clinical cases. Acad Radiol. 2004 Jan; 11(1):29-37.
    View in: PubMed
    Score: 0.208
  5. Higashida Y, Ideguchi T, Muranaka T, Tabata N, Miyajima R, Akazawa F, Ikeda H, Morimoto K, Ohki M, Toyofuku F, Doi K. [ROC analysis of detection of interval changes in interstitial lung diseases on digital chest radiographs using the temporal subtraction technique]. Nihon Igaku Hoshasen Gakkai Zasshi. 2004 Jan; 64(1):35-40.
    View in: PubMed
    Score: 0.208
  6. Abe H, Ashizawa K, Katsuragawa S, MacMahon H, Doi K. Use of an artificial neural network to determine the diagnostic value of specific clinical and radiologic parameters in the diagnosis of interstitial lung disease on chest radiographs. Acad Radiol. 2002 Jan; 9(1):13-7.
    View in: PubMed
    Score: 0.181
  7. Ashizawa K, MacMahon H, Ishida T, Nakamura K, Vyborny CJ, Katsuragawa S, Doi K. Effect of an artificial neural network on radiologists' performance in the differential diagnosis of interstitial lung disease using chest radiographs. AJR Am J Roentgenol. 1999 May; 172(5):1311-5.
    View in: PubMed
    Score: 0.150
  8. Ashizawa K, Ishida T, MacMahon H, Vyborny CJ, Katsuragawa S, Doi K. Artificial neural networks in chest radiography: application to the differential diagnosis of interstitial lung disease. Acad Radiol. 1999 Jan; 6(1):2-9.
    View in: PubMed
    Score: 0.147
  9. Monnier-Cholley L, MacMahon H, Katsuragawa S, Morishita J, Ishida T, Doi K. Computer-aided diagnosis for detection of interstitial opacities on chest radiographs. AJR Am J Roentgenol. 1998 Dec; 171(6):1651-6.
    View in: PubMed
    Score: 0.146
  10. Ishida T, Katsuragawa S, Ashizawa K, MacMahon H, Doi K. Application of artificial neural networks for quantitative analysis of image data in chest radiographs for detection of interstitial lung disease. J Digit Imaging. 1998 Nov; 11(4):182-92.
    View in: PubMed
    Score: 0.145
  11. Ishida T, Katsuragawa S, Kobayashi T, MacMahon H, Doi K. Computerized analysis of interstitial disease in chest radiographs: improvement of geometric-pattern feature analysis. Med Phys. 1997 Jun; 24(6):915-24.
    View in: PubMed
    Score: 0.132
  12. Monnier-Cholley L, MacMahon H, Katsuragawa S, Morishita J, Doi K. Computerized analysis of interstitial infiltrates on chest radiographs: a new scheme based on geometric pattern features and Fourier analysis. Acad Radiol. 1995 Jun; 2(6):455-62.
    View in: PubMed
    Score: 0.115
  13. Shiraishi J, Li Q, Appelbaum D, Doi K. Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin Nucl Med. 2011 Nov; 41(6):449-62.
    View in: PubMed
    Score: 0.089
  14. Li Q, Li F, Suzuki K, Shiraishi J, Abe H, Engelmann R, Nie Y, MacMahon H, Doi K. Computer-aided diagnosis in thoracic CT. Semin Ultrasound CT MR. 2005 Oct; 26(5):357-63.
    View in: PubMed
    Score: 0.059
  15. Abe H, MacMahon H, Engelmann R, Li Q, Shiraishi J, Katsuragawa S, Aoyama M, Ishida T, Ashizawa K, Metz CE, Doi K. Computer-aided diagnosis in chest radiography: results of large-scale observer tests at the 1996-2001 RSNA scientific assemblies. Radiographics. 2003 Jan-Feb; 23(1):255-65.
    View in: PubMed
    Score: 0.049
  16. van Ginneken B, Katsuragawa S, ter Haar Romeny BM, Doi K, Viergever MA. Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Trans Med Imaging. 2002 Feb; 21(2):139-49.
    View in: PubMed
    Score: 0.046
  17. Katsuragawa S, Doi K, MacMahon H, Monnier-Cholley L, Ishida T, Kobayashi T. Classification of normal and abnormal lungs with interstitial diseases by rule-based method and artificial neural networks. J Digit Imaging. 1997 Aug; 10(3):108-14.
    View in: PubMed
    Score: 0.033
  18. Katsuragawa S, Doi K, MacMahon H, Monnier-Cholley L, Morishita J, Ishida T. Quantitative analysis of geometric-pattern features of interstitial infiltrates in digital chest radiographs: preliminary results. J Digit Imaging. 1996 Aug; 9(3):137-44.
    View in: PubMed
    Score: 0.031
  19. Morishita J, Doi K, Katsuragawa S, Monnier-Cholley L, MacMahon H. Computer-aided diagnosis for interstitial infiltrates in chest radiographs: optical-density dependence of texture measures. Med Phys. 1995 Sep; 22(9):1515-22.
    View in: PubMed
    Score: 0.029
  20. Chen X, Doi K, Katsuragawa S, MacMahon H. Automated selection of regions of interest for quantitative analysis of lung textures in digital chest radiographs. Med Phys. 1993 Jul-Aug; 20(4):975-82.
    View in: PubMed
    Score: 0.025
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.