The University of Chicago Header Logo

Connection

John H.R. Maunsell to Macaca mulatta

This is a "connection" page, showing publications John H.R. Maunsell has written about Macaca mulatta.
Connection Strength

5.959
  1. Locus coeruleus norepinephrine contributes to visual-spatial attention by selectively enhancing perceptual sensitivity. Neuron. 2024 Jul 03; 112(13):2231-2240.e5.
    View in: PubMed
    Score: 0.776
  2. Single trial neuronal activity dynamics of attentional intensity in monkey visual area V4. Nat Commun. 2021 03 31; 12(1):2003.
    View in: PubMed
    Score: 0.627
  3. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 2011 Apr; 9(4):e1000610.
    View in: PubMed
    Score: 0.314
  4. Behavioral detection of electrical microstimulation in different cortical visual areas. Curr Biol. 2007 May 15; 17(10):862-7.
    View in: PubMed
    Score: 0.239
  5. Effects of spatial attention on contrast response functions in macaque area V4. J Neurophysiol. 2006 Jul; 96(1):40-54.
    View in: PubMed
    Score: 0.225
  6. The effect of perceptual learning on neuronal responses in monkey visual area V4. J Neurosci. 2004 Feb 18; 24(7):1617-26.
    View in: PubMed
    Score: 0.191
  7. The role of attention in visual processing. Philos Trans R Soc Lond B Biol Sci. 2002 Aug 29; 357(1424):1063-72.
    View in: PubMed
    Score: 0.173
  8. Neuronal correlates of selective attention and effort in visual area V4 are invariant of motivational context. Sci Adv. 2022 06 10; 8(23):eabc8812.
    View in: PubMed
    Score: 0.170
  9. The Correlation of Neuronal Signals with Behavior at Different Levels of Visual Cortex and Their Relative Reliability for Behavioral Decisions. J Neurosci. 2020 05 06; 40(19):3751-3767.
    View in: PubMed
    Score: 0.146
  10. Neuronal Effects of Spatial and Feature Attention Differ Due to Normalization. J Neurosci. 2019 07 10; 39(28):5493-5505.
    View in: PubMed
    Score: 0.137
  11. Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Vis Neurosci. 1999 Jan-Feb; 16(1):1-14.
    View in: PubMed
    Score: 0.134
  12. Electrical Microstimulation of Visual Cerebral Cortex Elevates Psychophysical Detection Thresholds. eNeuro. 2018 Sep-Oct; 5(5).
    View in: PubMed
    Score: 0.133
  13. Attentional Changes in Either Criterion or Sensitivity Are Associated with Robust Modulations in Lateral Prefrontal Cortex. Neuron. 2018 03 21; 97(6):1382-1393.e7.
    View in: PubMed
    Score: 0.127
  14. Spatially tuned normalization explains attention modulation variance within neurons. J Neurophysiol. 2017 09 01; 118(3):1903-1913.
    View in: PubMed
    Score: 0.121
  15. Attention-related changes in correlated neuronal activity arise from normalization mechanisms. Nat Neurosci. 2017 Jul; 20(7):969-977.
    View in: PubMed
    Score: 0.120
  16. Attention operates uniformly throughout the classical receptive field and the surround. Elife. 2016 08 22; 5.
    View in: PubMed
    Score: 0.114
  17. Graded Neuronal Modulations Related to Visual Spatial Attention. J Neurosci. 2016 05 11; 36(19):5353-61.
    View in: PubMed
    Score: 0.112
  18. A Refined Neuronal Population Measure of Visual Attention. PLoS One. 2015; 10(8):e0136570.
    View in: PubMed
    Score: 0.106
  19. Neuronal Modulations in Visual Cortex Are Associated with Only One of Multiple Components of Attention. Neuron. 2015 Jun 03; 86(5):1182-8.
    View in: PubMed
    Score: 0.105
  20. A strong constraint to the joint processing of pairs of cortical signals. J Neurosci. 2012 Nov 07; 32(45):15922-33.
    View in: PubMed
    Score: 0.088
  21. Potential confounds in estimating trial-to-trial correlations between neuronal response and behavior using choice probabilities. J Neurophysiol. 2012 Dec; 108(12):3403-15.
    View in: PubMed
    Score: 0.087
  22. Tuned normalization explains the size of attention modulations. Neuron. 2012 Feb 23; 73(4):803-13.
    View in: PubMed
    Score: 0.083
  23. When attention wanders: how uncontrolled fluctuations in attention affect performance. J Neurosci. 2011 Nov 02; 31(44):15802-6.
    View in: PubMed
    Score: 0.082
  24. Network rhythms influence the relationship between spike-triggered local field potential and functional connectivity. J Neurosci. 2011 Aug 31; 31(35):12674-82.
    View in: PubMed
    Score: 0.081
  25. Using neuronal populations to study the mechanisms underlying spatial and feature attention. Neuron. 2011 Jun 23; 70(6):1192-204.
    View in: PubMed
    Score: 0.080
  26. Effects of stimulus direction on the correlation between behavior and single units in area MT during a motion detection task. J Neurosci. 2011 Jun 01; 31(22):8230-8.
    View in: PubMed
    Score: 0.079
  27. A neuronal population measure of attention predicts behavioral performance on individual trials. J Neurosci. 2010 Nov 10; 30(45):15241-53.
    View in: PubMed
    Score: 0.076
  28. Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron. 2010 Sep 09; 67(5):885-96.
    View in: PubMed
    Score: 0.075
  29. The effect of attention on neuronal responses to high and low contrast stimuli. J Neurophysiol. 2010 Aug; 104(2):960-71.
    View in: PubMed
    Score: 0.074
  30. Microstimulation reveals limits in detecting different signals from a local cortical region. Curr Biol. 2010 May 11; 20(9):824-8.
    View in: PubMed
    Score: 0.073
  31. Attentional modulation of MT neurons with single or multiple stimuli in their receptive fields. J Neurosci. 2010 Feb 24; 30(8):3058-66.
    View in: PubMed
    Score: 0.073
  32. Attention improves performance primarily by reducing interneuronal correlations. Nat Neurosci. 2009 Dec; 12(12):1594-600.
    View in: PubMed
    Score: 0.071
  33. Electrical microstimulation thresholds for behavioral detection and saccades in monkey frontal eye fields. Proc Natl Acad Sci U S A. 2008 May 20; 105(20):7315-20.
    View in: PubMed
    Score: 0.064
  34. Spatial summation can explain the attentional modulation of neuronal responses to multiple stimuli in area V4. J Neurosci. 2008 May 07; 28(19):5115-26.
    View in: PubMed
    Score: 0.064
  35. Spatial attention and the latency of neuronal responses in macaque area V4. J Neurosci. 2007 Sep 05; 27(36):9632-7.
    View in: PubMed
    Score: 0.061
  36. Effects of task difficulty and target likelihood in area V4 of macaque monkeys. J Neurophysiol. 2006 Nov; 96(5):2377-87.
    View in: PubMed
    Score: 0.057
  37. Using neuronal latency to determine sensory-motor processing pathways in reaction time tasks. J Neurophysiol. 2005 May; 93(5):2974-86.
    View in: PubMed
    Score: 0.050
  38. Attentional modulation of motion integration of individual neurons in the middle temporal visual area. J Neurosci. 2004 Sep 08; 24(36):7964-77.
    View in: PubMed
    Score: 0.050
  39. Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. J Neurophysiol. 2003 Jun; 89(6):3264-78.
    View in: PubMed
    Score: 0.046
  40. Attentional modulation in visual cortex depends on task timing. Nature. 2002 Oct 10; 419(6907):616-20.
    View in: PubMed
    Score: 0.044
  41. Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat Neurosci. 2002 Oct; 5(10):985-94.
    View in: PubMed
    Score: 0.043
  42. Physiological correlates of perceptual learning in monkey V1 and V2. J Neurophysiol. 2002 Apr; 87(4):1867-88.
    View in: PubMed
    Score: 0.042
  43. Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. J Neurosci. 2002 Mar 01; 22(5):1994-2004.
    View in: PubMed
    Score: 0.042
  44. Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing. Nat Neurosci. 2000 Aug; 3(8):814-21.
    View in: PubMed
    Score: 0.037
  45. Attention to both space and feature modulates neuronal responses in macaque area V4. J Neurophysiol. 2000 Mar; 83(3):1751-5.
    View in: PubMed
    Score: 0.036
  46. Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron. 1999 Aug; 23(4):765-73.
    View in: PubMed
    Score: 0.035
  47. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J Neurosci. 1999 Jan 01; 19(1):431-41.
    View in: PubMed
    Score: 0.034
  48. Sensory modality specificity of neural activity related to memory in visual cortex. J Neurophysiol. 1997 Sep; 78(3):1263-75.
    View in: PubMed
    Score: 0.031
  49. Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature. 1995 Feb 09; 373(6514):518-21.
    View in: PubMed
    Score: 0.026
  50. Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex. J Neurosci. 1994 Apr; 14(4):2069-79.
    View in: PubMed
    Score: 0.024
  51. Visual response latencies in striate cortex of the macaque monkey. J Neurophysiol. 1992 Oct; 68(4):1332-44.
    View in: PubMed
    Score: 0.022
  52. Extraretinal representations in area V4 in the macaque monkey. Vis Neurosci. 1991 Dec; 7(6):561-73.
    View in: PubMed
    Score: 0.021
  53. The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. J Neurophysiol. 1987 Apr; 57(4):1033-49.
    View in: PubMed
    Score: 0.015
  54. Functions of the ON and OFF channels of the visual system. Nature. 1986 Aug 28-Sep 3; 322(6082):824-5.
    View in: PubMed
    Score: 0.014
  55. On the relationship between synaptic input and spike output jitter in individual neurons. Proc Natl Acad Sci U S A. 1997 Jan 21; 94(2):735-40.
    View in: PubMed
    Score: 0.007
  56. State dependent activity in monkey visual cortex. II. Retinal and extraretinal factors in V4. Exp Brain Res. 1988; 69(2):245-59.
    View in: PubMed
    Score: 0.004
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.