The University of Chicago Header Logo

Connection

John H.R. Maunsell to Visual Cortex

This is a "connection" page, showing publications John H.R. Maunsell has written about Visual Cortex.
Connection Strength

15.842
  1. Neuronal correlates of selective attention and effort in visual area V4 are invariant of motivational context. Sci Adv. 2022 06 10; 8(23):eabc8812.
    View in: PubMed
    Score: 0.658
  2. Perceptual Weighting of V1 Spikes Revealed by Optogenetic White Noise Stimulation. J Neurosci. 2022 04 13; 42(15):3122-3132.
    View in: PubMed
    Score: 0.645
  3. Single trial neuronal activity dynamics of attentional intensity in monkey visual area V4. Nat Commun. 2021 03 31; 12(1):2003.
    View in: PubMed
    Score: 0.605
  4. Mice Preferentially Use Increases in Cerebral Cortex Spiking to Detect Changes in Visual Stimuli. J Neurosci. 2020 10 07; 40(41):7902-7920.
    View in: PubMed
    Score: 0.583
  5. The Correlation of Neuronal Signals with Behavior at Different Levels of Visual Cortex and Their Relative Reliability for Behavioral Decisions. J Neurosci. 2020 05 06; 40(19):3751-3767.
    View in: PubMed
    Score: 0.566
  6. Neuronal Effects of Spatial and Feature Attention Differ Due to Normalization. J Neurosci. 2019 07 10; 39(28):5493-5505.
    View in: PubMed
    Score: 0.531
  7. Electrical Microstimulation of Visual Cerebral Cortex Elevates Psychophysical Detection Thresholds. eNeuro. 2018 Sep-Oct; 5(5).
    View in: PubMed
    Score: 0.512
  8. Attentional Changes in Either Criterion or Sensitivity Are Associated with Robust Modulations in Lateral Prefrontal Cortex. Neuron. 2018 03 21; 97(6):1382-1393.e7.
    View in: PubMed
    Score: 0.489
  9. Attention operates uniformly throughout the classical receptive field and the surround. Elife. 2016 08 22; 5.
    View in: PubMed
    Score: 0.440
  10. Graded Neuronal Modulations Related to Visual Spatial Attention. J Neurosci. 2016 05 11; 36(19):5353-61.
    View in: PubMed
    Score: 0.431
  11. A Refined Neuronal Population Measure of Visual Attention. PLoS One. 2015; 10(8):e0136570.
    View in: PubMed
    Score: 0.410
  12. Neuronal Modulations in Visual Cortex Are Associated with Only One of Multiple Components of Attention. Neuron. 2015 Jun 03; 86(5):1182-8.
    View in: PubMed
    Score: 0.404
  13. Mouse primary visual cortex is used to detect both orientation and contrast changes. J Neurosci. 2013 Dec 11; 33(50):19416-22.
    View in: PubMed
    Score: 0.365
  14. A strong constraint to the joint processing of pairs of cortical signals. J Neurosci. 2012 Nov 07; 32(45):15922-33.
    View in: PubMed
    Score: 0.338
  15. Tuned normalization explains the size of attention modulations. Neuron. 2012 Feb 23; 73(4):803-13.
    View in: PubMed
    Score: 0.322
  16. Using neuronal populations to study the mechanisms underlying spatial and feature attention. Neuron. 2011 Jun 23; 70(6):1192-204.
    View in: PubMed
    Score: 0.308
  17. Effects of stimulus direction on the correlation between behavior and single units in area MT during a motion detection task. J Neurosci. 2011 Jun 01; 31(22):8230-8.
    View in: PubMed
    Score: 0.306
  18. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 2011 Apr; 9(4):e1000610.
    View in: PubMed
    Score: 0.303
  19. A neuronal population measure of attention predicts behavioral performance on individual trials. J Neurosci. 2010 Nov 10; 30(45):15241-53.
    View in: PubMed
    Score: 0.295
  20. Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron. 2010 Sep 09; 67(5):885-96.
    View in: PubMed
    Score: 0.291
  21. The effect of attention on neuronal responses to high and low contrast stimuli. J Neurophysiol. 2010 Aug; 104(2):960-71.
    View in: PubMed
    Score: 0.286
  22. Attentional modulation of MT neurons with single or multiple stimuli in their receptive fields. J Neurosci. 2010 Feb 24; 30(8):3058-66.
    View in: PubMed
    Score: 0.281
  23. Attention improves performance primarily by reducing interneuronal correlations. Nat Neurosci. 2009 Dec; 12(12):1594-600.
    View in: PubMed
    Score: 0.275
  24. Spatial summation can explain the attentional modulation of neuronal responses to multiple stimuli in area V4. J Neurosci. 2008 May 07; 28(19):5115-26.
    View in: PubMed
    Score: 0.248
  25. Local cortical function after uncomplicated subdural electrode implantation. Laboratory investigation. J Neurosurg. 2008 Jan; 108(1):139-44.
    View in: PubMed
    Score: 0.242
  26. Spatial attention does not strongly modulate neuronal responses in early human visual cortex. J Neurosci. 2007 Nov 28; 27(48):13205-9.
    View in: PubMed
    Score: 0.240
  27. Spatial attention and the latency of neuronal responses in macaque area V4. J Neurosci. 2007 Sep 05; 27(36):9632-7.
    View in: PubMed
    Score: 0.236
  28. Receptive fields in human visual cortex mapped with surface electrodes. Cereb Cortex. 2007 Oct; 17(10):2293-302.
    View in: PubMed
    Score: 0.225
  29. Effects of task difficulty and target likelihood in area V4 of macaque monkeys. J Neurophysiol. 2006 Nov; 96(5):2377-87.
    View in: PubMed
    Score: 0.219
  30. Effects of spatial attention on contrast response functions in macaque area V4. J Neurophysiol. 2006 Jul; 96(1):40-54.
    View in: PubMed
    Score: 0.218
  31. Feature-based attention in visual cortex. Trends Neurosci. 2006 Jun; 29(6):317-22.
    View in: PubMed
    Score: 0.216
  32. Motion processing in macaque V4. Nat Neurosci. 2005 Sep; 8(9):1125; author reply 1125.
    View in: PubMed
    Score: 0.206
  33. Attentional modulation of motion integration of individual neurons in the middle temporal visual area. J Neurosci. 2004 Sep 08; 24(36):7964-77.
    View in: PubMed
    Score: 0.192
  34. Stimulus-dependent differences in cortical versus subcortical contributions to visual detection in mice. Curr Biol. 2024 05 06; 34(9):1940-1952.e5.
    View in: PubMed
    Score: 0.187
  35. The effect of perceptual learning on neuronal responses in monkey visual area V4. J Neurosci. 2004 Feb 18; 24(7):1617-26.
    View in: PubMed
    Score: 0.185
  36. Normalization in mouse primary visual cortex. PLoS One. 2023; 18(12):e0295140.
    View in: PubMed
    Score: 0.183
  37. Attentional modulation in visual cortex depends on task timing. Nature. 2002 Oct 10; 419(6907):616-20.
    View in: PubMed
    Score: 0.168
  38. Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat Neurosci. 2002 Oct; 5(10):985-94.
    View in: PubMed
    Score: 0.168
  39. Physiological correlates of perceptual learning in monkey V1 and V2. J Neurophysiol. 2002 Apr; 87(4):1867-88.
    View in: PubMed
    Score: 0.162
  40. Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. J Neurosci. 2002 Mar 01; 22(5):1994-2004.
    View in: PubMed
    Score: 0.161
  41. Attention to both space and feature modulates neuronal responses in macaque area V4. J Neurophysiol. 2000 Mar; 83(3):1751-5.
    View in: PubMed
    Score: 0.140
  42. Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J Neurosci. 1999 Sep 01; 19(17):7591-602.
    View in: PubMed
    Score: 0.136
  43. Specialized representations in visual cortex: a role for binding? Neuron. 1999 Sep; 24(1):79-85, 111-25.
    View in: PubMed
    Score: 0.136
  44. Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron. 1999 Aug; 23(4):765-73.
    View in: PubMed
    Score: 0.135
  45. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J Neurosci. 1999 Jan 01; 19(1):431-41.
    View in: PubMed
    Score: 0.130
  46. Sensory modality specificity of neural activity related to memory in visual cortex. J Neurophysiol. 1997 Sep; 78(3):1263-75.
    View in: PubMed
    Score: 0.118
  47. Attention-related changes in correlated neuronal activity arise from normalization mechanisms. Nat Neurosci. 2017 Jul; 20(7):969-977.
    View in: PubMed
    Score: 0.116
  48. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature. 1996 Aug 08; 382(6591):539-41.
    View in: PubMed
    Score: 0.110
  49. The brain's visual world: representation of visual targets in cerebral cortex. Science. 1995 Nov 03; 270(5237):764-9.
    View in: PubMed
    Score: 0.104
  50. Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex. J Neurosci. 1994 Apr; 14(4):2069-79.
    View in: PubMed
    Score: 0.093
  51. Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways. J Neurosci. 1994 Apr; 14(4):2080-8.
    View in: PubMed
    Score: 0.093
  52. Cortical neural populations can guide behavior by integrating inputs linearly, independent of synchrony. Proc Natl Acad Sci U S A. 2014 Jan 07; 111(1):E178-87.
    View in: PubMed
    Score: 0.091
  53. Visual effects of lesions of cortical area V2 in macaques. J Neurosci. 1993 Jul; 13(7):3180-91.
    View in: PubMed
    Score: 0.088
  54. Strength of gamma rhythm depends on normalization. PLoS Biol. 2013; 11(2):e1001477.
    View in: PubMed
    Score: 0.086
  55. How parallel are the primate visual pathways? Annu Rev Neurosci. 1993; 16:369-402.
    View in: PubMed
    Score: 0.085
  56. Spatiotemporal sensitivity following lesions of area 18 in the cat. J Neurosci. 1992 Nov; 12(11):4521-9.
    View in: PubMed
    Score: 0.084
  57. Visual response latencies in striate cortex of the macaque monkey. J Neurophysiol. 1992 Oct; 68(4):1332-44.
    View in: PubMed
    Score: 0.084
  58. Mixed parvocellular and magnocellular geniculate signals in visual area V4. Nature. 1992 Aug 27; 358(6389):756-61.
    View in: PubMed
    Score: 0.083
  59. Extraretinal representations in area V4 in the macaque monkey. Vis Neurosci. 1991 Dec; 7(6):561-73.
    View in: PubMed
    Score: 0.079
  60. When attention wanders: how uncontrolled fluctuations in attention affect performance. J Neurosci. 2011 Nov 02; 31(44):15802-6.
    View in: PubMed
    Score: 0.079
  61. Microstimulation reveals limits in detecting different signals from a local cortical region. Curr Biol. 2010 May 11; 20(9):824-8.
    View in: PubMed
    Score: 0.071
  62. Deficits in speed discrimination following lesions of the lateral suprasylvian cortex in the cat. Vis Neurosci. 1989 Oct; 3(4):365-75.
    View in: PubMed
    Score: 0.068
  63. Computer-controlled electrical stimulation for quantitative mapping of human cortical function. J Neurosurg. 2009 Jun; 110(6):1300-3.
    View in: PubMed
    Score: 0.067
  64. Electrical microstimulation thresholds for behavioral detection and saccades in monkey frontal eye fields. Proc Natl Acad Sci U S A. 2008 May 20; 105(20):7315-20.
    View in: PubMed
    Score: 0.062
  65. Topographic organization of the middle temporal visual area in the macaque monkey: representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. J Comp Neurol. 1987 Dec 22; 266(4):535-55.
    View in: PubMed
    Score: 0.060
  66. The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. J Neurophysiol. 1987 Apr; 57(4):1033-49.
    View in: PubMed
    Score: 0.057
  67. Visual processing in monkey extrastriate cortex. Annu Rev Neurosci. 1987; 10:363-401.
    View in: PubMed
    Score: 0.056
  68. The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res. 1984; 24(5):429-48.
    View in: PubMed
    Score: 0.046
  69. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci. 1983 Dec; 3(12):2563-86.
    View in: PubMed
    Score: 0.046
  70. Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing. Nat Neurosci. 2000 Aug; 3(8):814-21.
    View in: PubMed
    Score: 0.036
  71. On the relationship between synaptic input and spike output jitter in individual neurons. Proc Natl Acad Sci U S A. 1997 Jan 21; 94(2):735-40.
    View in: PubMed
    Score: 0.028
  72. Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci. 1990 Oct; 10(10):3323-34.
    View in: PubMed
    Score: 0.018
  73. State dependent activity in monkey visual cortex. II. Retinal and extraretinal factors in V4. Exp Brain Res. 1988; 69(2):245-59.
    View in: PubMed
    Score: 0.015
  74. Ventral posterior visual area of the macaque: visual topography and areal boundaries. J Comp Neurol. 1986 Oct 08; 252(2):139-53.
    View in: PubMed
    Score: 0.014
  75. The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: asymmetries, areal boundaries, and patchy connections. J Comp Neurol. 1986 Feb 22; 244(4):451-80.
    View in: PubMed
    Score: 0.013
  76. The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol. 1981 Jul 01; 199(3):293-326.
    View in: PubMed
    Score: 0.010
  77. Coding of image contrast in central visual pathways of the macaque monkey. Vision Res. 1990; 30(1):1-10.
    View in: PubMed
    Score: 0.004
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.