The University of Chicago Header Logo

Connection

Tao Pan to Molecular Sequence Data

This is a "connection" page, showing publications Tao Pan has written about Molecular Sequence Data.
Connection Strength

1.364
  1. A dual fluorescent reporter for the investigation of methionine mistranslation in live cells. RNA. 2016 Mar; 22(3):467-76.
    View in: PubMed
    Score: 0.094
  2. Methionine Mistranslation Bypasses the Restraint of the Genetic Code to Generate Mutant Proteins with Distinct Activities. PLoS Genet. 2015 Dec; 11(12):e1005745.
    View in: PubMed
    Score: 0.094
  3. Efficient and quantitative high-throughput tRNA sequencing. Nat Methods. 2015 Sep; 12(9):835-837.
    View in: PubMed
    Score: 0.091
  4. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. 2013 Dec; 19(12):1848-56.
    View in: PubMed
    Score: 0.081
  5. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch. Proc Natl Acad Sci U S A. 2012 Feb 28; 109(9):3323-8.
    View in: PubMed
    Score: 0.072
  6. Functional analysis of human tRNA isodecoders. J Mol Biol. 2010 Feb 26; 396(3):821-31.
    View in: PubMed
    Score: 0.062
  7. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res. 2006; 34(21):6137-46.
    View in: PubMed
    Score: 0.050
  8. Mechanistic insights on the folding of a large ribozyme during transcription. Biochemistry. 2005 May 24; 44(20):7535-42.
    View in: PubMed
    Score: 0.045
  9. Efficient fluorescence labeling of a large RNA through oligonucleotide hybridization. RNA. 2005 Feb; 11(2):234-9.
    View in: PubMed
    Score: 0.044
  10. Reduced contact order and RNA folding rates. J Mol Biol. 2004 Oct 01; 342(5):1359-65.
    View in: PubMed
    Score: 0.043
  11. Stepwise conversion of a mesophilic to a thermophilic ribozyme. J Mol Biol. 2003 Jul 04; 330(2):177-83.
    View in: PubMed
    Score: 0.040
  12. Dimeric and monomeric Bacillus subtilis RNase P holoenzyme in the absence and presence of pre-tRNA substrates. Biochemistry. 2002 Oct 29; 41(43):12986-94.
    View in: PubMed
    Score: 0.038
  13. The rate-limiting step in the folding of a large ribozyme without kinetic traps. Proc Natl Acad Sci U S A. 2002 Jun 25; 99(13):8518-23.
    View in: PubMed
    Score: 0.037
  14. Modular construction of a tertiary RNA structure: the specificity domain of the Bacillus subtilis RNase P RNA. Biochemistry. 2001 Sep 18; 40(37):11202-10.
    View in: PubMed
    Score: 0.035
  15. Modular construction for function of a ribonucleoprotein enzyme: the catalytic domain of Bacillus subtilis RNase P complexed with B. subtilis RNase P protein. Nucleic Acids Res. 2001 May 01; 29(9):1892-7.
    View in: PubMed
    Score: 0.034
  16. Altering the intermediate in the equilibrium folding of unmodified yeast tRNAPhe with monovalent and divalent cations. Biochemistry. 2001 Mar 27; 40(12):3629-38.
    View in: PubMed
    Score: 0.034
  17. The 3' substrate determinants for the catalytic efficiency of the Bacillus subtilis RNase P holoenzyme suggest autolytic processing of the RNase P RNA in vivo. RNA. 2000 Oct; 6(10):1413-22.
    View in: PubMed
    Score: 0.033
  18. Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites. Nucleic Acids Res. 1999 Nov 01; 27(21):4298-304.
    View in: PubMed
    Score: 0.031
  19. The cleavage step of ribonuclease P catalysis is determined by ribozyme-substrate interactions both distal and proximal to the cleavage site. Biochemistry. 1999 Jul 06; 38(27):8612-20.
    View in: PubMed
    Score: 0.030
  20. Pathway modulation, circular permutation and rapid RNA folding under kinetic control. J Mol Biol. 1999 Feb 26; 286(3):721-31.
    View in: PubMed
    Score: 0.029
  21. Recognition of a pre-tRNA substrate by the Bacillus subtilis RNase P holoenzyme. Biochemistry. 1998 Nov 03; 37(44):15466-73.
    View in: PubMed
    Score: 0.029
  22. Interaction of structural modules in substrate binding by the ribozyme from Bacillus subtilis RNase P. Nucleic Acids Res. 1998 Aug 15; 26(16):3717-23.
    View in: PubMed
    Score: 0.028
  23. Recognition of the T stem-loop of a pre-tRNA substrate by the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry. 1997 May 27; 36(21):6317-25.
    View in: PubMed
    Score: 0.026
  24. Domain structure of the ribozyme from eubacterial ribonuclease P. RNA. 1996 Jun; 2(6):551-63.
    View in: PubMed
    Score: 0.024
  25. Multiple substrate binding sites in the ribozyme from Bacillus subtilis RNase P. EMBO J. 1996 May 01; 15(9):2249-55.
    View in: PubMed
    Score: 0.024
  26. Novel RNA substrates for the ribozyme from Bacillus subtilis ribonuclease P identified by in vitro selection. Biochemistry. 1995 Jul 04; 34(26):8458-64.
    View in: PubMed
    Score: 0.023
  27. Higher order folding and domain analysis of the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry. 1995 Jan 24; 34(3):902-9.
    View in: PubMed
    Score: 0.022
  28. A nutrient-driven tRNA modification alters translational fidelity and genome-wide protein coding across an animal genus. PLoS Biol. 2014 Dec; 12(12):e1002015.
    View in: PubMed
    Score: 0.022
  29. Selection of circularly permuted ribozymes from Bacillus subtilis RNAse P by substrate binding. Biochemistry. 1994 Nov 29; 33(47):14207-12.
    View in: PubMed
    Score: 0.022
  30. Mitochondrial genome of Protobothrops dabieshanensis (Squamata: Viperidae: Crotalinae). Mitochondrial DNA. 2014 Oct; 25(5):337-8.
    View in: PubMed
    Score: 0.020
  31. Discrete structure of an RNA folding intermediate revealed by cryo-electron microscopy. J Am Chem Soc. 2010 Nov 24; 132(46):16352-3.
    View in: PubMed
    Score: 0.016
  32. A large collapsed-state RNA can exhibit simple exponential single-molecule dynamics. J Mol Biol. 2008 May 09; 378(4):943-53.
    View in: PubMed
    Score: 0.014
  33. Structure of ribonuclease P--a universal ribozyme. Curr Opin Struct Biol. 2006 Jun; 16(3):327-35.
    View in: PubMed
    Score: 0.012
  34. Structural basis for altering the stability of homologous RNAs from a mesophilic and a thermophilic bacterium. RNA. 2006 Apr; 12(4):598-606.
    View in: PubMed
    Score: 0.012
  35. Structure of a folding intermediate reveals the interplay between core and peripheral elements in RNA folding. J Mol Biol. 2005 Sep 23; 352(3):712-22.
    View in: PubMed
    Score: 0.012
  36. Basis for structural diversity in homologous RNAs. Science. 2004 Oct 01; 306(5693):104-7.
    View in: PubMed
    Score: 0.011
  37. Crystal structure of the specificity domain of ribonuclease P. Nature. 2003 Feb 13; 421(6924):760-4.
    View in: PubMed
    Score: 0.010
  38. The thermodynamic origin of the stability of a thermophilic ribozyme. Proc Natl Acad Sci U S A. 2001 Apr 10; 98(8):4355-60.
    View in: PubMed
    Score: 0.008
  39. Mg2+-dependent compaction and folding of yeast tRNAPhe and the catalytic domain of the B. subtilis RNase P RNA determined by small-angle X-ray scattering. Biochemistry. 2000 Sep 12; 39(36):11107-13.
    View in: PubMed
    Score: 0.008
  40. A thermodynamic framework and cooperativity in the tertiary folding of a Mg2+-dependent ribozyme. Biochemistry. 1999 Dec 21; 38(51):16840-6.
    View in: PubMed
    Score: 0.008
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.