The University of Chicago Header Logo

Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Nanduri R. Prabhakar and Ying-Jie Peng.
Connection Strength

15.693
  1. Role of olfactory receptor78 in carotid body-dependent sympathetic activation and hypertension in murine models of chronic intermittent hypoxia. J Neurophysiol. 2021 06 01; 125(6):2054-2067.
    View in: PubMed
    Score: 0.865
  2. Olfactory receptor 78 participates in carotid body response to a wide range of low O2 levels but not severe hypoxia. J Neurophysiol. 2020 05 01; 123(5):1886-1895.
    View in: PubMed
    Score: 0.802
  3. H2S mediates carotid body response to hypoxia but not anoxia. Respir Physiol Neurobiol. 2019 01; 259:75-85.
    View in: PubMed
    Score: 0.716
  4. Therapeutic Targeting of the Carotid Body for Treating Sleep Apnea in a Pre-clinical Mouse Model. Adv Exp Med Biol. 2018; 1071:109-114.
    View in: PubMed
    Score: 0.687
  5. Measurement of Sensory Nerve Activity from the Carotid Body. Methods Mol Biol. 2018; 1742:115-124.
    View in: PubMed
    Score: 0.687
  6. Complementary roles of gasotransmitters CO and H2S in sleep apnea. Proc Natl Acad Sci U S A. 2017 02 07; 114(6):1413-1418.
    View in: PubMed
    Score: 0.644
  7. Oxygen Sensing by the Carotid Body: Past and Present. Adv Exp Med Biol. 2017; 977:3-8.
    View in: PubMed
    Score: 0.641
  8. Regulation of hypoxia-inducible factor-a isoforms and redox state by carotid body neural activity in rats. J Physiol. 2014 Sep 01; 592(17):3841-58.
    View in: PubMed
    Score: 0.539
  9. Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema. Proc Natl Acad Sci U S A. 2014 Jan 21; 111(3):1174-9.
    View in: PubMed
    Score: 0.521
  10. Role of oxidative stress-induced endothelin-converting enzyme activity in the alteration of carotid body function by chronic intermittent hypoxia. Exp Physiol. 2013 Nov; 98(11):1620-30.
    View in: PubMed
    Score: 0.506
  11. Sympatho-adrenal activation by chronic intermittent hypoxia. J Appl Physiol (1985). 2012 Oct 15; 113(8):1304-10.
    View in: PubMed
    Score: 0.469
  12. Endothelin-1 mediates attenuated carotid baroreceptor activity by intermittent hypoxia. J Appl Physiol (1985). 2012 Jan; 112(1):187-96.
    View in: PubMed
    Score: 0.447
  13. Angiotensin II evokes sensory long-term facilitation of the carotid body via NADPH oxidase. J Appl Physiol (1985). 2011 Oct; 111(4):964-70.
    View in: PubMed
    Score: 0.436
  14. Hypoxia-inducible factor 2a (HIF-2a) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proc Natl Acad Sci U S A. 2011 Feb 15; 108(7):3065-70.
    View in: PubMed
    Score: 0.426
  15. H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci U S A. 2010 Jun 08; 107(23):10719-24.
    View in: PubMed
    Score: 0.407
  16. NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J Neurosci. 2009 Apr 15; 29(15):4903-10.
    View in: PubMed
    Score: 0.376
  17. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol. 2006 Dec 01; 577(Pt 2):705-16.
    View in: PubMed
    Score: 0.314
  18. 5-HT evokes sensory long-term facilitation of rodent carotid body via activation of NADPH oxidase. J Physiol. 2006 Oct 01; 576(Pt 1):289-95.
    View in: PubMed
    Score: 0.312
  19. Intermittent hypoxia augments carotid body and ventilatory response to hypoxia in neonatal rat pups. J Appl Physiol (1985). 2004 Nov; 97(5):2020-5.
    View in: PubMed
    Score: 0.270
  20. Peripheral chemoreceptors in health and disease. J Appl Physiol (1985). 2004 Jan; 96(1):359-66.
    View in: PubMed
    Score: 0.260
  21. Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity. J Appl Physiol (1985). 2004 Mar; 96(3):1236-42; discussion 1196.
    View in: PubMed
    Score: 0.259
  22. Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci U S A. 2003 Aug 19; 100(17):10073-8.
    View in: PubMed
    Score: 0.253
  23. Reactive oxygen species in the plasticity of respiratory behavior elicited by chronic intermittent hypoxia. J Appl Physiol (1985). 2003 Jun; 94(6):2342-9.
    View in: PubMed
    Score: 0.244
  24. Systemic and cellular responses to intermittent hypoxia: evidence for oxidative stress and mitochondrial dysfunction. Adv Exp Med Biol. 2003; 536:559-64.
    View in: PubMed
    Score: 0.243
  25. Gaseous transmitter regulation of hypoxia-evoked catecholamine secretion from murine adrenal chromaffin cells. J Neurophysiol. 2021 05 01; 125(5):1533-1542.
    View in: PubMed
    Score: 0.215
  26. Olfactory receptor 78 regulates erythropoietin and cardiorespiratory responses to hypobaric hypoxia. J Appl Physiol (1985). 2021 04 01; 130(4):1122-1132.
    View in: PubMed
    Score: 0.213
  27. Chronic intermittent hypoxia enhances carotid body chemoreceptor response to low oxygen. Adv Exp Med Biol. 2001; 499:33-8.
    View in: PubMed
    Score: 0.212
  28. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest. 2020 10 01; 130(10):5042-5051.
    View in: PubMed
    Score: 0.208
  29. Long-term facilitation of catecholamine secretion from adrenal chromaffin cells of neonatal rats by chronic intermittent hypoxia. J Neurophysiol. 2019 11 01; 122(5):1874-1883.
    View in: PubMed
    Score: 0.193
  30. Recent advances in understanding the physiology of hypoxic sensing by the carotid body. F1000Res. 2018; 7.
    View in: PubMed
    Score: 0.183
  31. Neural Activation of Molecular Circuitry in Intermittent Hypoxia. Curr Opin Physiol. 2019 Feb; 7:9-14.
    View in: PubMed
    Score: 0.183
  32. Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia. Cell Tissue Res. 2018 05; 372(2):427-431.
    View in: PubMed
    Score: 0.174
  33. DNA methylation in the central and efferent limbs of the chemoreflex requires carotid body neural activity. J Physiol. 2018 08; 596(15):3087-3100.
    View in: PubMed
    Score: 0.172
  34. Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after long-term intermittent hypoxia. J Physiol. 2017 01 01; 595(1):63-77.
    View in: PubMed
    Score: 0.158
  35. H2S production by reactive oxygen species in the carotid body triggers hypertension in a rodent model of sleep apnea. Sci Signal. 2016 08 16; 9(441):ra80.
    View in: PubMed
    Score: 0.156
  36. CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia. J Neurophysiol. 2016 Jan 01; 115(1):345-54.
    View in: PubMed
    Score: 0.148
  37. Protein kinase G-regulated production of H2S governs oxygen sensing. Sci Signal. 2015 Apr 21; 8(373):ra37.
    View in: PubMed
    Score: 0.143
  38. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia. Compr Physiol. 2015 Apr; 5(2):561-77.
    View in: PubMed
    Score: 0.142
  39. Hypoxia-inducible factors and hypertension: lessons from sleep apnea syndrome. J Mol Med (Berl). 2015 May; 93(5):473-80.
    View in: PubMed
    Score: 0.142
  40. Neuromolecular mechanisms mediating the effects of chronic intermittent hypoxia on adrenal medulla. Respir Physiol Neurobiol. 2015 Apr; 209:115-9.
    View in: PubMed
    Score: 0.140
  41. Carotid Body Chemoreflex Mediates Intermittent Hypoxia-Induced Oxidative Stress in the Adrenal Medulla. Adv Exp Med Biol. 2015; 860:195-9.
    View in: PubMed
    Score: 0.140
  42. CaV3.2 T-type Ca?? channels in H2S-mediated hypoxic response of the carotid body. Am J Physiol Cell Physiol. 2015 Jan 15; 308(2):C146-54.
    View in: PubMed
    Score: 0.138
  43. Central and peripheral factors contributing to obstructive sleep apneas. Respir Physiol Neurobiol. 2013 Nov 01; 189(2):344-53.
    View in: PubMed
    Score: 0.125
  44. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proc Natl Acad Sci U S A. 2012 Feb 14; 109(7):2515-20.
    View in: PubMed
    Score: 0.114
  45. Intermittent hypoxia degrades HIF-2alpha via calpains resulting in oxidative stress: implications for recurrent apnea-induced morbidities. Proc Natl Acad Sci U S A. 2009 Jan 27; 106(4):1199-204.
    View in: PubMed
    Score: 0.092
  46. Long-term regulation of carotid body function: acclimatization and adaptation--invited article. Adv Exp Med Biol. 2009; 648:307-17.
    View in: PubMed
    Score: 0.092
  47. Comparative analysis of neonatal and adult rat carotid body responses to chronic intermittent hypoxia. J Appl Physiol (1985). 2008 May; 104(5):1287-94.
    View in: PubMed
    Score: 0.086
  48. Altered carotid body function by intermittent hypoxia in neonates and adults: relevance to recurrent apneas. Respir Physiol Neurobiol. 2007 Jul 01; 157(1):148-53.
    View in: PubMed
    Score: 0.080
  49. Acute lung injury augments hypoxic ventilatory response in the absence of systemic hypoxemia. J Appl Physiol (1985). 2006 Dec; 101(6):1795-802.
    View in: PubMed
    Score: 0.078
  50. Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress. J Physiol. 2006 Aug 15; 575(Pt 1):229-39.
    View in: PubMed
    Score: 0.077
  51. Reactive oxygen species facilitate oxygen sensing. Novartis Found Symp. 2006; 272:95-9; discussion 100-5, 131-40.
    View in: PubMed
    Score: 0.075
  52. Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin Exp Pharmacol Physiol. 2005 May-Jun; 32(5-6):447-9.
    View in: PubMed
    Score: 0.071
  53. Modulation of the hypoxic sensory response of the carotid body by 5-hydroxytryptamine: role of the 5-HT2 receptor. Respir Physiol Neurobiol. 2005 Feb 15; 145(2-3):135-42.
    View in: PubMed
    Score: 0.070
  54. Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B. Respir Physiol Neurobiol. 2005 Jan 15; 145(1):23-31.
    View in: PubMed
    Score: 0.070
  55. Detection of oxygen sensing during intermittent hypoxia. Methods Enzymol. 2004; 381:107-20.
    View in: PubMed
    Score: 0.065
  56. Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci U S A. 2002 Jan 22; 99(2):821-6.
    View in: PubMed
    Score: 0.057
  57. Histone Deacetylase 5 Is an Early Epigenetic Regulator of Intermittent Hypoxia Induced Sympathetic Nerve Activation and Blood Pressure. Front Physiol. 2021; 12:688322.
    View in: PubMed
    Score: 0.054
  58. Hypoxia-inducible factors regulate human and rat cystathionine ?-synthase gene expression. Biochem J. 2014 Mar 01; 458(2):203-11.
    View in: PubMed
    Score: 0.033
  59. Particulate matter induces cardiac arrhythmias via dysregulation of carotid body sensitivity and cardiac sodium channels. Am J Respir Cell Mol Biol. 2012 Apr; 46(4):524-31.
    View in: PubMed
    Score: 0.028
  60. Pattern-specific sustained activation of tyrosine hydroxylase by intermittent hypoxia: role of reactive oxygen species-dependent downregulation of protein phosphatase 2A and upregulation of protein kinases. Antioxid Redox Signal. 2009 Aug; 11(8):1777-89.
    View in: PubMed
    Score: 0.024
  61. Kv1.1 deletion augments the afferent hypoxic chemosensory pathway and respiration. J Neurosci. 2005 Mar 30; 25(13):3389-99.
    View in: PubMed
    Score: 0.018
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.