The University of Chicago Header Logo

Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Nanduri R. Prabhakar and Ying-Jie Peng.
Connection Strength

17.168
  1. Hypoxia sensing requires H2S-dependent persulfidation of olfactory receptor 78. Sci Adv. 2023 07 07; 9(27):eadf3026.
    View in: PubMed
    Score: 0.940
  2. Carotid body responses to O2 and CO2 in hypoxia-tolerant naked mole rats. Acta Physiol (Oxf). 2022 10; 236(2):e13851.
    View in: PubMed
    Score: 0.876
  3. Role of olfactory receptor78 in carotid body-dependent sympathetic activation and hypertension in murine models of chronic intermittent hypoxia. J Neurophysiol. 2021 06 01; 125(6):2054-2067.
    View in: PubMed
    Score: 0.808
  4. Olfactory receptor 78 participates in carotid body response to a wide range of low O2 levels but not severe hypoxia. J Neurophysiol. 2020 05 01; 123(5):1886-1895.
    View in: PubMed
    Score: 0.749
  5. H2S mediates carotid body response to hypoxia but not anoxia. Respir Physiol Neurobiol. 2019 01; 259:75-85.
    View in: PubMed
    Score: 0.669
  6. Therapeutic Targeting of the Carotid Body for Treating Sleep Apnea in a Pre-clinical Mouse Model. Adv Exp Med Biol. 2018; 1071:109-114.
    View in: PubMed
    Score: 0.642
  7. Measurement of Sensory Nerve Activity from the Carotid Body. Methods Mol Biol. 2018; 1742:115-124.
    View in: PubMed
    Score: 0.642
  8. Complementary roles of gasotransmitters CO and H2S in sleep apnea. Proc Natl Acad Sci U S A. 2017 02 07; 114(6):1413-1418.
    View in: PubMed
    Score: 0.601
  9. Oxygen Sensing by the Carotid Body: Past and Present. Adv Exp Med Biol. 2017; 977:3-8.
    View in: PubMed
    Score: 0.599
  10. Regulation of hypoxia-inducible factor-a isoforms and redox state by carotid body neural activity in rats. J Physiol. 2014 Sep 01; 592(17):3841-58.
    View in: PubMed
    Score: 0.503
  11. Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema. Proc Natl Acad Sci U S A. 2014 Jan 21; 111(3):1174-9.
    View in: PubMed
    Score: 0.487
  12. Role of oxidative stress-induced endothelin-converting enzyme activity in the alteration of carotid body function by chronic intermittent hypoxia. Exp Physiol. 2013 Nov; 98(11):1620-30.
    View in: PubMed
    Score: 0.473
  13. Sympatho-adrenal activation by chronic intermittent hypoxia. J Appl Physiol (1985). 2012 Oct 15; 113(8):1304-10.
    View in: PubMed
    Score: 0.437
  14. Endothelin-1 mediates attenuated carotid baroreceptor activity by intermittent hypoxia. J Appl Physiol (1985). 2012 Jan; 112(1):187-96.
    View in: PubMed
    Score: 0.418
  15. Angiotensin II evokes sensory long-term facilitation of the carotid body via NADPH oxidase. J Appl Physiol (1985). 2011 Oct; 111(4):964-70.
    View in: PubMed
    Score: 0.407
  16. Hypoxia-inducible factor 2a (HIF-2a) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proc Natl Acad Sci U S A. 2011 Feb 15; 108(7):3065-70.
    View in: PubMed
    Score: 0.397
  17. H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci U S A. 2010 Jun 08; 107(23):10719-24.
    View in: PubMed
    Score: 0.380
  18. NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J Neurosci. 2009 Apr 15; 29(15):4903-10.
    View in: PubMed
    Score: 0.351
  19. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol. 2006 Dec 01; 577(Pt 2):705-16.
    View in: PubMed
    Score: 0.293
  20. 5-HT evokes sensory long-term facilitation of rodent carotid body via activation of NADPH oxidase. J Physiol. 2006 Oct 01; 576(Pt 1):289-95.
    View in: PubMed
    Score: 0.291
  21. Intermittent hypoxia augments carotid body and ventilatory response to hypoxia in neonatal rat pups. J Appl Physiol (1985). 2004 Nov; 97(5):2020-5.
    View in: PubMed
    Score: 0.252
  22. Peripheral chemoreceptors in health and disease. J Appl Physiol (1985). 2004 Jan; 96(1):359-66.
    View in: PubMed
    Score: 0.243
  23. Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity. J Appl Physiol (1985). 2004 Mar; 96(3):1236-42; discussion 1196.
    View in: PubMed
    Score: 0.242
  24. Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci U S A. 2003 Aug 19; 100(17):10073-8.
    View in: PubMed
    Score: 0.236
  25. Carotid body hypersensitivity in intermittent hypoxia and obtructive sleep apnoea. J Physiol. 2023 Dec; 601(24):5481-5494.
    View in: PubMed
    Score: 0.232
  26. Reactive oxygen species in the plasticity of respiratory behavior elicited by chronic intermittent hypoxia. J Appl Physiol (1985). 2003 Jun; 94(6):2342-9.
    View in: PubMed
    Score: 0.228
  27. Systemic and cellular responses to intermittent hypoxia: evidence for oxidative stress and mitochondrial dysfunction. Adv Exp Med Biol. 2003; 536:559-64.
    View in: PubMed
    Score: 0.227
  28. Adaptive cardiorespiratory changes to chronic continuous and intermittent hypoxia. Handb Clin Neurol. 2022; 188:103-123.
    View in: PubMed
    Score: 0.212
  29. Gaseous transmitter regulation of hypoxia-evoked catecholamine secretion from murine adrenal chromaffin cells. J Neurophysiol. 2021 05 01; 125(5):1533-1542.
    View in: PubMed
    Score: 0.200
  30. Olfactory receptor 78 regulates erythropoietin and cardiorespiratory responses to hypobaric hypoxia. J Appl Physiol (1985). 2021 04 01; 130(4):1122-1132.
    View in: PubMed
    Score: 0.199
  31. Chronic intermittent hypoxia enhances carotid body chemoreceptor response to low oxygen. Adv Exp Med Biol. 2001; 499:33-8.
    View in: PubMed
    Score: 0.198
  32. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest. 2020 10 01; 130(10):5042-5051.
    View in: PubMed
    Score: 0.194
  33. Long-term facilitation of catecholamine secretion from adrenal chromaffin cells of neonatal rats by chronic intermittent hypoxia. J Neurophysiol. 2019 11 01; 122(5):1874-1883.
    View in: PubMed
    Score: 0.180
  34. Recent advances in understanding the physiology of hypoxic sensing by the carotid body. F1000Res. 2018; 7.
    View in: PubMed
    Score: 0.171
  35. Neural Activation of Molecular Circuitry in Intermittent Hypoxia. Curr Opin Physiol. 2019 Feb; 7:9-14.
    View in: PubMed
    Score: 0.171
  36. Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia. Cell Tissue Res. 2018 05; 372(2):427-431.
    View in: PubMed
    Score: 0.162
  37. DNA methylation in the central and efferent limbs of the chemoreflex requires carotid body neural activity. J Physiol. 2018 08; 596(15):3087-3100.
    View in: PubMed
    Score: 0.161
  38. Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after long-term intermittent hypoxia. J Physiol. 2017 01 01; 595(1):63-77.
    View in: PubMed
    Score: 0.147
  39. H2S production by reactive oxygen species in the carotid body triggers hypertension in a rodent model of sleep apnea. Sci Signal. 2016 08 16; 9(441):ra80.
    View in: PubMed
    Score: 0.146
  40. CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia. J Neurophysiol. 2016 Jan 01; 115(1):345-54.
    View in: PubMed
    Score: 0.138
  41. Protein kinase G-regulated production of H2S governs oxygen sensing. Sci Signal. 2015 Apr 21; 8(373):ra37.
    View in: PubMed
    Score: 0.133
  42. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia. Compr Physiol. 2015 Apr; 5(2):561-77.
    View in: PubMed
    Score: 0.133
  43. Hypoxia-inducible factors and hypertension: lessons from sleep apnea syndrome. J Mol Med (Berl). 2015 May; 93(5):473-80.
    View in: PubMed
    Score: 0.132
  44. Neuromolecular mechanisms mediating the effects of chronic intermittent hypoxia on adrenal medulla. Respir Physiol Neurobiol. 2015 Apr; 209:115-9.
    View in: PubMed
    Score: 0.131
  45. Carotid Body Chemoreflex Mediates Intermittent Hypoxia-Induced Oxidative Stress in the Adrenal Medulla. Adv Exp Med Biol. 2015; 860:195-9.
    View in: PubMed
    Score: 0.130
  46. CaV3.2 T-type Ca²? channels in H2S-mediated hypoxic response of the carotid body. Am J Physiol Cell Physiol. 2015 Jan 15; 308(2):C146-54.
    View in: PubMed
    Score: 0.129
  47. Hypoxia-inducible factors regulate human and rat cystathionine ß-synthase gene expression. Biochem J. 2014 Mar 01; 458(2):203-11.
    View in: PubMed
    Score: 0.123
  48. Central and peripheral factors contributing to obstructive sleep apneas. Respir Physiol Neurobiol. 2013 Nov 01; 189(2):344-53.
    View in: PubMed
    Score: 0.117
  49. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proc Natl Acad Sci U S A. 2012 Feb 14; 109(7):2515-20.
    View in: PubMed
    Score: 0.106
  50. Intermittent hypoxia degrades HIF-2alpha via calpains resulting in oxidative stress: implications for recurrent apnea-induced morbidities. Proc Natl Acad Sci U S A. 2009 Jan 27; 106(4):1199-204.
    View in: PubMed
    Score: 0.086
  51. Long-term regulation of carotid body function: acclimatization and adaptation--invited article. Adv Exp Med Biol. 2009; 648:307-17.
    View in: PubMed
    Score: 0.086
  52. Comparative analysis of neonatal and adult rat carotid body responses to chronic intermittent hypoxia. J Appl Physiol (1985). 2008 May; 104(5):1287-94.
    View in: PubMed
    Score: 0.080
  53. Altered carotid body function by intermittent hypoxia in neonates and adults: relevance to recurrent apneas. Respir Physiol Neurobiol. 2007 Jul 01; 157(1):148-53.
    View in: PubMed
    Score: 0.075
  54. Acute lung injury augments hypoxic ventilatory response in the absence of systemic hypoxemia. J Appl Physiol (1985). 2006 Dec; 101(6):1795-802.
    View in: PubMed
    Score: 0.073
  55. Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress. J Physiol. 2006 Aug 15; 575(Pt 1):229-39.
    View in: PubMed
    Score: 0.072
  56. Reactive oxygen species facilitate oxygen sensing. Novartis Found Symp. 2006; 272:95-9; discussion 100-5, 131-40.
    View in: PubMed
    Score: 0.070
  57. Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin Exp Pharmacol Physiol. 2005 May-Jun; 32(5-6):447-9.
    View in: PubMed
    Score: 0.067
  58. Modulation of the hypoxic sensory response of the carotid body by 5-hydroxytryptamine: role of the 5-HT2 receptor. Respir Physiol Neurobiol. 2005 Feb 15; 145(2-3):135-42.
    View in: PubMed
    Score: 0.066
  59. Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B. Respir Physiol Neurobiol. 2005 Jan 15; 145(1):23-31.
    View in: PubMed
    Score: 0.065
  60. Detection of oxygen sensing during intermittent hypoxia. Methods Enzymol. 2004; 381:107-20.
    View in: PubMed
    Score: 0.061
  61. Gasotransmitter modulation of hypoglossal motoneuron activity. Elife. 2023 01 19; 12.
    View in: PubMed
    Score: 0.057
  62. A pleiotropic hypoxia-sensitive EPAS1 enhancer is disrupted by adaptive alleles in Tibetans. Sci Adv. 2022 Nov 25; 8(47):eade1942.
    View in: PubMed
    Score: 0.056
  63. Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci U S A. 2002 Jan 22; 99(2):821-6.
    View in: PubMed
    Score: 0.053
  64. Intermittent Hypoxia-Induced Activation of Endothelial Cells Is Mediated via Sympathetic Activation-Dependent Catecholamine Release. Front Physiol. 2021; 12:701995.
    View in: PubMed
    Score: 0.051
  65. Histone Deacetylase 5 Is an Early Epigenetic Regulator of Intermittent Hypoxia Induced Sympathetic Nerve Activation and Blood Pressure. Front Physiol. 2021; 12:688322.
    View in: PubMed
    Score: 0.051
  66. Particulate matter induces cardiac arrhythmias via dysregulation of carotid body sensitivity and cardiac sodium channels. Am J Respir Cell Mol Biol. 2012 Apr; 46(4):524-31.
    View in: PubMed
    Score: 0.026
  67. Pattern-specific sustained activation of tyrosine hydroxylase by intermittent hypoxia: role of reactive oxygen species-dependent downregulation of protein phosphatase 2A and upregulation of protein kinases. Antioxid Redox Signal. 2009 Aug; 11(8):1777-89.
    View in: PubMed
    Score: 0.022
  68. Kv1.1 deletion augments the afferent hypoxic chemosensory pathway and respiration. J Neurosci. 2005 Mar 30; 25(13):3389-99.
    View in: PubMed
    Score: 0.017
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.