The University of Chicago Header Logo

Connection

Nanduri R. Prabhakar to Adrenal Medulla

This is a "connection" page, showing publications Nanduri R. Prabhakar has written about Adrenal Medulla.
Connection Strength

4.685
  1. Adrenal epinephrine facilitates erythropoietin gene activation by hypoxia through ß2 adrenergic receptor interaction with Hif-2a. Am J Physiol Regul Integr Comp Physiol. 2025 Jan 01; 328(1):R75-R80.
    View in: PubMed
    Score: 0.940
  2. Long-term facilitation of catecholamine secretion from adrenal chromaffin cells of neonatal rats by chronic intermittent hypoxia. J Neurophysiol. 2019 11 01; 122(5):1874-1883.
    View in: PubMed
    Score: 0.654
  3. Neuromolecular mechanisms mediating the effects of chronic intermittent hypoxia on adrenal medulla. Respir Physiol Neurobiol. 2015 Apr; 209:115-9.
    View in: PubMed
    Score: 0.474
  4. Carotid Body Chemoreflex Mediates Intermittent Hypoxia-Induced Oxidative Stress in the Adrenal Medulla. Adv Exp Med Biol. 2015; 860:195-9.
    View in: PubMed
    Score: 0.473
  5. Sympatho-adrenal activation by chronic intermittent hypoxia. J Appl Physiol (1985). 2012 Oct 15; 113(8):1304-10.
    View in: PubMed
    Score: 0.397
  6. Hypoxia-inducible factor 2a (HIF-2a) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proc Natl Acad Sci U S A. 2011 Feb 15; 108(7):3065-70.
    View in: PubMed
    Score: 0.361
  7. Neonatal intermittent hypoxia leads to long-lasting facilitation of acute hypoxia-evoked catecholamine secretion from rat chromaffin cells. J Neurophysiol. 2009 Jun; 101(6):2837-46.
    View in: PubMed
    Score: 0.318
  8. Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress. J Physiol. 2006 Aug 15; 575(Pt 1):229-39.
    View in: PubMed
    Score: 0.262
  9. Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after long-term intermittent hypoxia. J Physiol. 2017 01 01; 595(1):63-77.
    View in: PubMed
    Score: 0.134
  10. Regulation of hypoxia-inducible factor-a isoforms and redox state by carotid body neural activity in rats. J Physiol. 2014 Sep 01; 592(17):3841-58.
    View in: PubMed
    Score: 0.114
  11. Mutual antagonism between hypoxia-inducible factors 1a and 2a regulates oxygen sensing and cardio-respiratory homeostasis. Proc Natl Acad Sci U S A. 2013 May 07; 110(19):E1788-96.
    View in: PubMed
    Score: 0.105
  12. Developmental programming of O(2) sensing by neonatal intermittent hypoxia via epigenetic mechanisms. Respir Physiol Neurobiol. 2013 Jan 01; 185(1):105-9.
    View in: PubMed
    Score: 0.100
  13. Enhanced neuropeptide Y synthesis during intermittent hypoxia in the rat adrenal medulla: role of reactive oxygen species-dependent alterations in precursor peptide processing. Antioxid Redox Signal. 2011 Apr 01; 14(7):1179-90.
    View in: PubMed
    Score: 0.090
  14. Intermittent hypoxia-mediated plasticity of acute O2 sensing requires altered red-ox regulation by HIF-1 and HIF-2. Ann N Y Acad Sci. 2009 Oct; 1177:162-8.
    View in: PubMed
    Score: 0.082
  15. Contrasting effects of intermittent and continuous hypoxia on low O(2) evoked catecholamine secretion from neonatal rat chromaffin cells. Adv Exp Med Biol. 2009; 648:345-9.
    View in: PubMed
    Score: 0.078
  16. Increased secretory capacity of mouse adrenal chromaffin cells by chronic intermittent hypoxia: involvement of protein kinase C. J Physiol. 2007 Oct 01; 584(Pt 1):313-9.
    View in: PubMed
    Score: 0.071
  17. Calpain activation by ROS mediates human ether-a-go-go-related gene protein degradation by intermittent hypoxia. Am J Physiol Cell Physiol. 2016 Mar 01; 310(5):C329-36.
    View in: PubMed
    Score: 0.032
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.