Connection
Co-Authors
This is a "connection" page, showing publications co-authored by Karen Drukker and Hui Li.
|
|
Connection Strength |
|
 |
|
 |
|
1.004 |
|
|
|
-
Gyawali B, Parsad S, Feinberg BA, Nabhan C. Real-World Evidence and Randomized Studies in the Precision Oncology Era: The Right Balance. JCO Precis Oncol. 2017 Nov; 1:1-5.
Score: 0.179
-
Li H, Zhu Y, Burnside ES, Huang E, Drukker K, Hoadley KA, Fan C, Conzen SD, Zuley M, Net JM, Sutton E, Whitman GJ, Morris E, Perou CM, Ji Y, Giger ML. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer. 2016; 2.
Score: 0.162
-
Li H, Zhu Y, Burnside ES, Drukker K, Hoadley KA, Fan C, Conzen SD, Whitman GJ, Sutton EJ, Net JM, Ganott M, Huang E, Morris EA, Perou CM, Ji Y, Giger ML. MR Imaging Radiomics Signatures for Predicting the Risk of Breast Cancer Recurrence as Given by Research Versions of MammaPrint, Oncotype DX, and PAM50 Gene Assays. Radiology. 2016 Nov; 281(2):382-391.
Score: 0.162
-
Drukker K, Duewer F, Giger ML, Malkov S, Flowers CI, Joe B, Kerlikowske K, Drukteinis JS, Li H, Shepherd JA. Mammographic quantitative image analysis and biologic image composition for breast lesion characterization and classification. Med Phys. 2014 Mar; 41(3):031915.
Score: 0.139
-
Sadinski M, Giger M, Drukker K, Yamaguchi K, Lan L, Li H. TU-E-217BCD-07: Pilot Study on Consistency in Size Metrics for a Multimodality PEM/MR Breast Imaging Approach. Med Phys. 2012 Jun; 39(6Part24):3915.
Score: 0.123
-
Yeh AC, Li H, Zhu Y, Zhang J, Khramtsova G, Drukker K, Edwards A, McGregor S, Yoshimatsu T, Zheng Y, Niu Q, Abe H, Mueller J, Conzen S, Ji Y, Giger ML, Olopade OI. Radiogenomics of breast cancer using dynamic contrast enhanced MRI and gene expression profiling. Cancer Imaging. 2019 Jul 15; 19(1):48.
Score: 0.050
-
Sutton EJ, Huang EP, Drukker K, Burnside ES, Li H, Net JM, Rao A, Whitman GJ, Zuley M, Ganott M, Bonaccio E, Giger ML, Morris EA. Breast MRI radiomics: comparison of computer- and human-extracted imaging phenotypes. Eur Radiol Exp. 2017; 1(1):22.
Score: 0.045
-
Zhu Y, Li H, Guo W, Drukker K, Lan L, Giger ML, Ji Y. Deciphering Genomic Underpinnings of Quantitative MRI-based Radiomic Phenotypes of Invasive Breast Carcinoma. Sci Rep. 2015 Dec 07; 5:17787.
Score: 0.039
-
Burnside ES, Drukker K, Li H, Bonaccio E, Zuley M, Ganott M, Net JM, Sutton EJ, Brandt KR, Whitman GJ, Conzen SD, Lan L, Ji Y, Zhu Y, Jaffe CC, Huang EP, Freymann JB, Kirby JS, Morris EA, Giger ML. Using computer-extracted image phenotypes from tumors on breast magnetic resonance imaging to predict breast cancer pathologic stage. Cancer. 2016 Mar 01; 122(5):748-57.
Score: 0.039
-
Guo W, Li H, Zhu Y, Lan L, Yang S, Drukker K, Morris E, Burnside E, Whitman G, Giger ML, Ji Y. Prediction of clinical phenotypes in invasive breast carcinomas from the integration of radiomics and genomics data. J Med Imaging (Bellingham). 2015 10; 2(4):041007.
Score: 0.039
-
Jamieson AR, Giger ML, Drukker K, Li H, Yuan Y, Bhooshan N. Exploring nonlinear feature space dimension reduction and data representation in breast Cadx with Laplacian eigenmaps and t-SNE. Med Phys. 2010 Jan; 37(1):339-51.
Score: 0.026
|
Connection Strength
The connection strength for concepts is the sum of the scores for each matching publication.
Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.
|