The University of Chicago Header Logo

Connection

Howard A. Shuman to Periplasmic Binding Proteins

This is a "connection" page, showing publications Howard A. Shuman has written about Periplasmic Binding Proteins.
  1. Truncation of MalF results in lactose transport via the maltose transport system of Escherichia coli. J Biol Chem. 1998 Jan 23; 273(4):2435-44.
    View in: PubMed
    Score: 0.153
  2. Unliganded maltose-binding protein triggers lactose transport in an Escherichia coli mutant with an alteration in the maltose transport system. J Bacteriol. 1997 Dec; 179(24):7687-94.
    View in: PubMed
    Score: 0.151
  3. Mutations that alter the transmembrane signalling pathway in an ATP binding cassette (ABC) transporter. EMBO J. 1994 Apr 01; 13(7):1752-9.
    View in: PubMed
    Score: 0.117
  4. Tinkering with transporters: periplasmic binding protein-dependent maltose transport in E. coli. J Bioenerg Biomembr. 1993 Dec; 25(6):613-20.
    View in: PubMed
    Score: 0.114
  5. Characterization of the structural requirements for assembly and nucleotide binding of an ATP-binding cassette transporter. The maltose transport system of Escherichia coli. J Biol Chem. 1993 Nov 05; 268(31):23685-96.
    View in: PubMed
    Score: 0.114
  6. Genetic analysis of periplasmic binding protein dependent transport in Escherichia coli. Each lobe of maltose-binding protein interacts with a different subunit of the MalFGK2 membrane transport complex. J Mol Biol. 1993 Oct 20; 233(4):659-70.
    View in: PubMed
    Score: 0.114
  7. Allele-specific malE mutations that restore interactions between maltose-binding protein and the inner-membrane components of the maltose transport system. J Mol Biol. 1988 Aug 20; 202(4):809-22.
    View in: PubMed
    Score: 0.079
  8. Transport of p-nitrophenyl-alpha-maltoside by the maltose transport system of Escherichia coli and its subsequent hydrolysis by a cytoplasmic alpha-maltosidase. J Bacteriol. 1986 Mar; 165(3):918-22.
    View in: PubMed
    Score: 0.067
  9. Genetic evidence for substrate and periplasmic-binding-protein recognition by the MalF and MalG proteins, cytoplasmic membrane components of the Escherichia coli maltose transport system. J Bacteriol. 1985 Aug; 163(2):654-60.
    View in: PubMed
    Score: 0.064
  10. Active transport of maltose in Escherichia coli K12. Role of the periplasmic maltose-binding protein and evidence for a substrate recognition site in the cytoplasmic membrane. J Biol Chem. 1982 May 25; 257(10):5455-61.
    View in: PubMed
    Score: 0.051
  11. Crystal structures and solution conformations of a dominant-negative mutant of Escherichia coli maltose-binding protein. J Mol Biol. 1996 Nov 29; 264(2):364-76.
    View in: PubMed
    Score: 0.035
  12. The inhibition of maltose transport by the unliganded form of the maltose-binding protein of Escherichia coli: experimental findings and mathematical treatment. J Theor Biol. 1995 Nov 21; 177(2):171-9.
    View in: PubMed
    Score: 0.033
  13. Interaction between maltose-binding protein and the membrane-associated maltose transporter complex in Escherichia coli. Mol Microbiol. 1992 Aug; 6(15):2033-40.
    View in: PubMed
    Score: 0.026
  14. Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. Proc Natl Acad Sci U S A. 1992 Mar 15; 89(6):2360-4.
    View in: PubMed
    Score: 0.025
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.