The University of Chicago Header Logo

Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Ying-Jie Peng and Jayasri Nanduri.
Connection Strength

4.469
  1. Hypoxia sensing requires H2S-dependent persulfidation of olfactory receptor 78. Sci Adv. 2023 07 07; 9(27):eadf3026.
    View in: PubMed
    Score: 0.236
  2. Carotid body hypersensitivity in intermittent hypoxia and obtructive sleep apnoea. J Physiol. 2023 Dec; 601(24):5481-5494.
    View in: PubMed
    Score: 0.234
  3. Carotid body responses to O2 and CO2 in hypoxia-tolerant naked mole rats. Acta Physiol (Oxf). 2022 10; 236(2):e13851.
    View in: PubMed
    Score: 0.220
  4. Adaptive cardiorespiratory changes to chronic continuous and intermittent hypoxia. Handb Clin Neurol. 2022; 188:103-123.
    View in: PubMed
    Score: 0.213
  5. Histone Deacetylase 5 Is an Early Epigenetic Regulator of Intermittent Hypoxia Induced Sympathetic Nerve Activation and Blood Pressure. Front Physiol. 2021; 12:688322.
    View in: PubMed
    Score: 0.204
  6. Role of olfactory receptor78 in carotid body-dependent sympathetic activation and hypertension in murine models of chronic intermittent hypoxia. J Neurophysiol. 2021 06 01; 125(6):2054-2067.
    View in: PubMed
    Score: 0.203
  7. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest. 2020 10 01; 130(10):5042-5051.
    View in: PubMed
    Score: 0.195
  8. Olfactory receptor 78 participates in carotid body response to a wide range of low O2 levels but not severe hypoxia. J Neurophysiol. 2020 05 01; 123(5):1886-1895.
    View in: PubMed
    Score: 0.188
  9. Recent advances in understanding the physiology of hypoxic sensing by the carotid body. F1000Res. 2018; 7.
    View in: PubMed
    Score: 0.172
  10. Neural Activation of Molecular Circuitry in Intermittent Hypoxia. Curr Opin Physiol. 2019 Feb; 7:9-14.
    View in: PubMed
    Score: 0.172
  11. Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia. Cell Tissue Res. 2018 05; 372(2):427-431.
    View in: PubMed
    Score: 0.163
  12. DNA methylation in the central and efferent limbs of the chemoreflex requires carotid body neural activity. J Physiol. 2018 08; 596(15):3087-3100.
    View in: PubMed
    Score: 0.162
  13. Therapeutic Targeting of the Carotid Body for Treating Sleep Apnea in a Pre-clinical Mouse Model. Adv Exp Med Biol. 2018; 1071:109-114.
    View in: PubMed
    Score: 0.161
  14. Complementary roles of gasotransmitters CO and H2S in sleep apnea. Proc Natl Acad Sci U S A. 2017 02 07; 114(6):1413-1418.
    View in: PubMed
    Score: 0.151
  15. Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after long-term intermittent hypoxia. J Physiol. 2017 01 01; 595(1):63-77.
    View in: PubMed
    Score: 0.148
  16. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia. Compr Physiol. 2015 Apr; 5(2):561-77.
    View in: PubMed
    Score: 0.133
  17. Hypoxia-inducible factors and hypertension: lessons from sleep apnea syndrome. J Mol Med (Berl). 2015 May; 93(5):473-80.
    View in: PubMed
    Score: 0.133
  18. Regulation of hypoxia-inducible factor-a isoforms and redox state by carotid body neural activity in rats. J Physiol. 2014 Sep 01; 592(17):3841-58.
    View in: PubMed
    Score: 0.127
  19. Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema. Proc Natl Acad Sci U S A. 2014 Jan 21; 111(3):1174-9.
    View in: PubMed
    Score: 0.122
  20. Role of oxidative stress-induced endothelin-converting enzyme activity in the alteration of carotid body function by chronic intermittent hypoxia. Exp Physiol. 2013 Nov; 98(11):1620-30.
    View in: PubMed
    Score: 0.119
  21. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proc Natl Acad Sci U S A. 2012 Feb 14; 109(7):2515-20.
    View in: PubMed
    Score: 0.107
  22. Endothelin-1 mediates attenuated carotid baroreceptor activity by intermittent hypoxia. J Appl Physiol (1985). 2012 Jan; 112(1):187-96.
    View in: PubMed
    Score: 0.105
  23. Hypoxia-inducible factor 2a (HIF-2a) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proc Natl Acad Sci U S A. 2011 Feb 15; 108(7):3065-70.
    View in: PubMed
    Score: 0.100
  24. H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci U S A. 2010 Jun 08; 107(23):10719-24.
    View in: PubMed
    Score: 0.096
  25. NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J Neurosci. 2009 Apr 15; 29(15):4903-10.
    View in: PubMed
    Score: 0.088
  26. Intermittent hypoxia degrades HIF-2alpha via calpains resulting in oxidative stress: implications for recurrent apnea-induced morbidities. Proc Natl Acad Sci U S A. 2009 Jan 27; 106(4):1199-204.
    View in: PubMed
    Score: 0.087
  27. Gasotransmitter modulation of hypoglossal motoneuron activity. Elife. 2023 01 19; 12.
    View in: PubMed
    Score: 0.057
  28. Intermittent Hypoxia-Induced Activation of Endothelial Cells Is Mediated via Sympathetic Activation-Dependent Catecholamine Release. Front Physiol. 2021; 12:701995.
    View in: PubMed
    Score: 0.052
  29. Gaseous transmitter regulation of hypoxia-evoked catecholamine secretion from murine adrenal chromaffin cells. J Neurophysiol. 2021 05 01; 125(5):1533-1542.
    View in: PubMed
    Score: 0.050
  30. Long-term facilitation of catecholamine secretion from adrenal chromaffin cells of neonatal rats by chronic intermittent hypoxia. J Neurophysiol. 2019 11 01; 122(5):1874-1883.
    View in: PubMed
    Score: 0.045
  31. H2S production by reactive oxygen species in the carotid body triggers hypertension in a rodent model of sleep apnea. Sci Signal. 2016 08 16; 9(441):ra80.
    View in: PubMed
    Score: 0.037
  32. CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia. J Neurophysiol. 2016 Jan 01; 115(1):345-54.
    View in: PubMed
    Score: 0.035
  33. Protein kinase G-regulated production of H2S governs oxygen sensing. Sci Signal. 2015 Apr 21; 8(373):ra37.
    View in: PubMed
    Score: 0.033
  34. Neuromolecular mechanisms mediating the effects of chronic intermittent hypoxia on adrenal medulla. Respir Physiol Neurobiol. 2015 Apr; 209:115-9.
    View in: PubMed
    Score: 0.033
  35. Carotid Body Chemoreflex Mediates Intermittent Hypoxia-Induced Oxidative Stress in the Adrenal Medulla. Adv Exp Med Biol. 2015; 860:195-9.
    View in: PubMed
    Score: 0.033
  36. CaV3.2 T-type Ca²? channels in H2S-mediated hypoxic response of the carotid body. Am J Physiol Cell Physiol. 2015 Jan 15; 308(2):C146-54.
    View in: PubMed
    Score: 0.032
  37. Long-term regulation of carotid body function: acclimatization and adaptation--invited article. Adv Exp Med Biol. 2009; 648:307-17.
    View in: PubMed
    Score: 0.022
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.