Mahesh P. Gupta to Histone Deacetylases
This is a "connection" page, showing publications Mahesh P. Gupta has written about Histone Deacetylases.
Connection Strength
1.905
-
Histone Deacetylase 3 (HDAC3)-dependent Reversible Lysine Acetylation of Cardiac Myosin Heavy Chain Isoforms Modulates Their Enzymatic and Motor Activity. J Biol Chem. 2015 Jun 19; 290(25):15559-15569.
Score: 0.484
-
HDAC3-dependent reversible lysine acetylation of cardiac myosin heavy chain isoforms modulates their enzymatic and motor activity. J Biol Chem. 2011 Feb 18; 286(7):5567-77.
Score: 0.358
-
SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol. 2008 Oct; 28(20):6384-401.
Score: 0.305
-
HDAC4 and PCAF bind to cardiac sarcomeres and play a role in regulating myofilament contractile activity. J Biol Chem. 2008 Apr 11; 283(15):10135-46.
Score: 0.294
-
Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem. 2005 Dec 30; 280(52):43121-30.
Score: 0.250
-
Acetylation of a conserved lysine residue in the ATP binding pocket of p38 augments its kinase activity during hypertrophy of cardiomyocytes. Mol Cell Biol. 2011 Jun; 31(11):2349-63.
Score: 0.091
-
Dephosphorylation and caspase processing generate distinct nuclear pools of histone deacetylase 4. Mol Cell Biol. 2007 Oct; 27(19):6718-32.
Score: 0.071
-
Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4. Implications in cardiac muscle gene regulation during hypertrophy. J Biol Chem. 2003 May 30; 278(22):20047-58.
Score: 0.052