The University of Chicago Header Logo

Connection

Steven Roth to Animals

This is a "connection" page, showing publications Steven Roth has written about Animals.
Connection Strength

0.778
  1. MicroRNA-based engineering of mesenchymal stem cell extracellular vesicles for treatment of retinal ischemic disorders: Engineered extracellular vesiclesand retinal ischemia. Acta Biomater. 2023 03 01; 158:782-797.
    View in: PubMed
    Score: 0.054
  2. Emerging concepts in the treatment of optic neuritis: mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther. 2021 Dec 04; 12(1):594.
    View in: PubMed
    Score: 0.050
  3. Intermittent Hypoxia and Effects on Early Learning/Memory: Exploring the Hippocampal Cellular Effects of Pediatric Obstructive Sleep Apnea. Anesth Analg. 2021 07 01; 133(1):93-103.
    View in: PubMed
    Score: 0.049
  4. Uptake and Distribution of Administered Bone Marrow Mesenchymal Stem Cell Extracellular Vesicles in Retina. Cells. 2021 03 25; 10(4).
    View in: PubMed
    Score: 0.048
  5. Autophagy and post-ischemic conditioning in retinal ischemia. Autophagy. 2021 06; 17(6):1479-1499.
    View in: PubMed
    Score: 0.045
  6. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion. Biomaterials. 2019 03; 197:146-160.
    View in: PubMed
    Score: 0.041
  7. Haemodilution and head-down tilting induce functional injury in the rat optic nerve: A model for peri-operative ischemic optic neuropathy. Eur J Anaesthesiol. 2018 11; 35(11):840-847.
    View in: PubMed
    Score: 0.041
  8. Gene expression in retinal ischemic post-conditioning. Graefes Arch Clin Exp Ophthalmol. 2018 May; 256(5):935-949.
    View in: PubMed
    Score: 0.039
  9. Bone-marrow mesenchymal stem-cell administration significantly improves outcome after retinal ischemia in rats. Graefes Arch Clin Exp Ophthalmol. 2017 Aug; 255(8):1581-1592.
    View in: PubMed
    Score: 0.037
  10. Hypoxic-Preconditioned Bone Marrow Stem Cell Medium Significantly Improves Outcome After Retinal Ischemia in Rats. Invest Ophthalmol Vis Sci. 2016 06 01; 57(7):3522-32.
    View in: PubMed
    Score: 0.034
  11. Inhaled Anesthesia, Apoptosis, and the Developing Retina: A Window into the Brain? Anesth Analg. 2015 Nov; 121(5):1117-8.
    View in: PubMed
    Score: 0.033
  12. Delayed administration of bone marrow mesenchymal stem cell conditioned medium significantly improves outcome after retinal ischemia in rats. Invest Ophthalmol Vis Sci. 2014 Apr 03; 55(6):3785-96.
    View in: PubMed
    Score: 0.029
  13. Protein kinase B (Akt) and mitogen-activated protein kinase p38a in retinal ischemic post-conditioning. J Mol Neurosci. 2011 Oct; 45(2):309-20.
    View in: PubMed
    Score: 0.024
  14. Delayed post-ischemic conditioning significantly improves the outcome after retinal ischemia. Exp Eye Res. 2011 Jun; 92(6):521-7.
    View in: PubMed
    Score: 0.024
  15. Mitogen-activated protein kinase phosphatase-1 (MKP-1) in retinal ischemic preconditioning. Exp Eye Res. 2011 Oct; 93(4):340-9.
    View in: PubMed
    Score: 0.023
  16. Post-ischemic conditioning in the rat retina is dependent upon ischemia duration and is not additive with ischemic pre-conditioning. Exp Eye Res. 2010 Dec; 91(6):844-52.
    View in: PubMed
    Score: 0.023
  17. Mitogen-activated protein kinase p38alpha and retinal ischemic preconditioning. Exp Eye Res. 2009 Nov; 89(5):782-90.
    View in: PubMed
    Score: 0.021
  18. Involvement of erythropoietin in retinal ischemic preconditioning. Anesthesiology. 2009 Apr; 110(4):774-80.
    View in: PubMed
    Score: 0.021
  19. The role of Akt/protein kinase B subtypes in retinal ischemic preconditioning. Exp Eye Res. 2009 Mar; 88(3):512-21.
    View in: PubMed
    Score: 0.020
  20. Protein kinase C subtypes and retinal ischemic preconditioning. Exp Eye Res. 2008 Oct; 87(4):300-11.
    View in: PubMed
    Score: 0.020
  21. Mitochondrial potassium ATP channels and retinal ischemic preconditioning. Invest Ophthalmol Vis Sci. 2006 May; 47(5):2114-24.
    View in: PubMed
    Score: 0.017
  22. Neuroprotective and Anti-Inflammatory Activities of Hybrid Small-Molecule SA-10 in Ischemia/Reperfusion-Induced Retinal Neuronal Injury Models. Cells. 2024 Feb 25; 13(5).
    View in: PubMed
    Score: 0.015
  23. Endogenous neuroprotection in the retina. Brain Res Bull. 2004 Feb 15; 62(6):461-6.
    View in: PubMed
    Score: 0.015
  24. Mitogen-activated protein kinases and retinal ischemia. Invest Ophthalmol Vis Sci. 2003 Dec; 44(12):5383-95.
    View in: PubMed
    Score: 0.014
  25. Ischemic preconditioning attenuates apoptotic cell death in the rat retina. Invest Ophthalmol Vis Sci. 2002 Sep; 43(9):3059-66.
    View in: PubMed
    Score: 0.013
  26. Functional gait analysis in a spinal contusion rat model. Neurosci Biobehav Rev. 2017 Dec; 83:540-546.
    View in: PubMed
    Score: 0.009
  27. A novel calpain inhibitor for treatment of transient retinal ischemia in the rat. Neuroreport. 2011 Sep 14; 22(13):633-6.
    View in: PubMed
    Score: 0.006
  28. Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J Neurosci Res. 2010 May 15; 88(7):1569-76.
    View in: PubMed
    Score: 0.006
  29. Retinal preconditioning and the induction of heat-shock protein 27. Invest Ophthalmol Vis Sci. 2003 Mar; 44(3):1299-304.
    View in: PubMed
    Score: 0.003
  30. Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2002 Aug 06; 99(16):10659-64.
    View in: PubMed
    Score: 0.003
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.