The University of Chicago Header Logo

Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Issam Awad and Robert Shenkar.
Connection Strength

12.548
  1. Credulity of exploratory trials for cerebral cavernous malformations. Lancet Neurol. 2023 01; 22(1):2-3.
    View in: PubMed
    Score: 0.963
  2. Propranolol as therapy for cerebral cavernous malformations: a cautionary note. J Transl Med. 2022 04 05; 20(1):160.
    View in: PubMed
    Score: 0.923
  3. Rho Kinase Inhibition Blunts Lesion Development and Hemorrhage in Murine Models of Aggressive Pdcd10/Ccm3 Disease. Stroke. 2019 03; 50(3):738-744.
    View in: PubMed
    Score: 0.744
  4. RhoA Kinase Inhibition With Fasudil Versus Simvastatin in Murine Models of Cerebral Cavernous Malformations. Stroke. 2017 01; 48(1):187-194.
    View in: PubMed
    Score: 0.636
  5. Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations. Genet Med. 2015 Mar; 17(3):188-196.
    View in: PubMed
    Score: 0.543
  6. Advanced magnetic resonance imaging of cerebral cavernous malformations: part I. High-field imaging of excised human lesions. Neurosurgery. 2008 Oct; 63(4):782-9; discussion 789.
    View in: PubMed
    Score: 0.362
  7. Advanced magnetic resonance imaging of cerebral cavernous malformations: part II. Imaging of lesions in murine models. Neurosurgery. 2008 Oct; 63(4):790-7; discussion 797-8.
    View in: PubMed
    Score: 0.362
  8. Concepts and hypotheses: inflammatory hypothesis in the pathogenesis of cerebral cavernous malformations. Neurosurgery. 2007 Oct; 61(4):693-702; discussion 702-3.
    View in: PubMed
    Score: 0.337
  9. Variations in structural protein expression and endothelial cell proliferation in relation to clinical manifestations of cerebral cavernous malformations. Neurosurgery. 2005 Feb; 56(2):343-54.
    View in: PubMed
    Score: 0.281
  10. Differential gene expression in human cerebrovascular malformations. Neurosurgery. 2003 Feb; 52(2):465-77; discussion 477-8.
    View in: PubMed
    Score: 0.244
  11. Circulating Plasma miRNA Homologs in Mice and Humans Reflect Familial Cerebral Cavernous Malformation Disease. Transl Stroke Res. 2022 Jun 17.
    View in: PubMed
    Score: 0.234
  12. Rapamycin in Cerebral Cavernous Malformations: What Doses to Test in Mice and Humans. ACS Pharmacol Transl Sci. 2022 May 13; 5(5):266-277.
    View in: PubMed
    Score: 0.232
  13. Propranolol inhibits cavernous vascular malformations by ?1 adrenergic receptor antagonism in animal models. J Clin Invest. 2021 10 01; 131(19).
    View in: PubMed
    Score: 0.223
  14. Perfusion and Permeability MRI Predicts Future Cavernous Angioma Hemorrhage and Growth. J Magn Reson Imaging. 2022 05; 55(5):1440-1449.
    View in: PubMed
    Score: 0.222
  15. COVID-19 in a Hemorrhagic Neurovascular Disease, Cerebral Cavernous Malformation. J Stroke Cerebrovasc Dis. 2021 Nov; 30(11):106101.
    View in: PubMed
    Score: 0.222
  16. Perfusion and permeability as diagnostic biomarkers of cavernous angioma with symptomatic hemorrhage. J Cereb Blood Flow Metab. 2021 11; 41(11):2944-2956.
    View in: PubMed
    Score: 0.217
  17. A Roadmap for Developing Plasma Diagnostic and Prognostic Biomarkers of Cerebral Cavernous Angioma With Symptomatic Hemorrhage (CASH). Neurosurgery. 2021 02 16; 88(3):686-697.
    View in: PubMed
    Score: 0.213
  18. Propranolol inhibits cavernous vascular malformations by ?1 adrenergic receptor antagonism in animal models. J Clin Invest. 2021 02 01; 131(3).
    View in: PubMed
    Score: 0.213
  19. Common transcriptome, plasma molecules, and imaging signatures in the aging brain and a Mendelian neurovascular disease, cerebral cavernous malformation. Geroscience. 2020 10; 42(5):1351-1363.
    View in: PubMed
    Score: 0.204
  20. Permissive microbiome characterizes human subjects with a neurovascular disease cavernous angioma. Nat Commun. 2020 05 27; 11(1):2659.
    View in: PubMed
    Score: 0.203
  21. Antibodies in cerebral cavernous malformations react with cytoskeleton autoantigens in the lesional milieu. J Autoimmun. 2020 09; 113:102469.
    View in: PubMed
    Score: 0.202
  22. Subclinical imaging changes in cerebral cavernous angiomas during prospective surveillance. J Neurosurg. 2020 Apr 03; 134(3):1147-1154.
    View in: PubMed
    Score: 0.201
  23. Atorvastatin Treatment of Cavernous Angiomas with Symptomatic Hemorrhage Exploratory Proof of Concept (AT CASH EPOC) Trial. Neurosurgery. 2019 12 01; 85(6):843-853.
    View in: PubMed
    Score: 0.196
  24. Phantom validation of quantitative susceptibility and dynamic contrast-enhanced permeability MR sequences across instruments and sites. J Magn Reson Imaging. 2020 04; 51(4):1192-1199.
    View in: PubMed
    Score: 0.193
  25. A Brain-Targeted Orally Available ROCK2 Inhibitor Benefits Mild and Aggressive Cavernous Angioma Disease. Transl Stroke Res. 2020 06; 11(3):365-376.
    View in: PubMed
    Score: 0.192
  26. Transcriptome clarifies mechanisms of lesion genesis versus progression in models of Ccm3 cerebral cavernous malformations. Acta Neuropathol Commun. 2019 08 19; 7(1):132.
    View in: PubMed
    Score: 0.192
  27. Biomarkers of cavernous angioma with symptomatic hemorrhage. JCI Insight. 2019 06 20; 4(12).
    View in: PubMed
    Score: 0.190
  28. Trial Readiness in Cavernous Angiomas With Symptomatic Hemorrhage (CASH). Neurosurgery. 2019 04 01; 84(4):954-964.
    View in: PubMed
    Score: 0.187
  29. Comprehensive transcriptome analysis of cerebral cavernous malformation across multiple species and genotypes. JCI Insight. 2019 Feb 07; 4(3).
    View in: PubMed
    Score: 0.185
  30. Phenotypic characterization of murine models of cerebral cavernous malformations. Lab Invest. 2019 03; 99(3):319-330.
    View in: PubMed
    Score: 0.178
  31. Plasma Biomarkers of Inflammation and Angiogenesis Predict Cerebral Cavernous Malformation Symptomatic Hemorrhage or Lesional Growth. Circ Res. 2018 06 08; 122(12):1716-1721.
    View in: PubMed
    Score: 0.176
  32. Plasma Biomarkers of Inflammation Reflect Seizures and Hemorrhagic Activity of Cerebral Cavernous Malformations. Transl Stroke Res. 2018 02; 9(1):34-43.
    View in: PubMed
    Score: 0.167
  33. Quantitative susceptibility mapping as a monitoring biomarker in cerebral cavernous malformations with recent hemorrhage. J Magn Reson Imaging. 2018 04; 47(4):1133-1138.
    View in: PubMed
    Score: 0.167
  34. Vascular permeability and iron deposition biomarkers in longitudinal follow-up of cerebral cavernous malformations. J Neurosurg. 2017 Jul; 127(1):102-110.
    View in: PubMed
    Score: 0.156
  35. Micro-computed tomography in murine models of cerebral cavernous malformations as a paradigm for brain disease. J Neurosci Methods. 2016 09 15; 271:14-24.
    View in: PubMed
    Score: 0.154
  36. B-Cell Depletion Reduces the Maturation of Cerebral Cavernous Malformations in Murine Models. J Neuroimmune Pharmacol. 2016 06; 11(2):369-77.
    View in: PubMed
    Score: 0.152
  37. Peripheral plasma vitamin D and non-HDL cholesterol reflect the severity of cerebral cavernous malformation disease. Biomark Med. 2016; 10(3):255-64.
    View in: PubMed
    Score: 0.151
  38. Vascular permeability in cerebral cavernous malformations. J Cereb Blood Flow Metab. 2015 Oct; 35(10):1632-9.
    View in: PubMed
    Score: 0.143
  39. Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping. Invest Radiol. 2014 Jul; 49(7):498-504.
    View in: PubMed
    Score: 0.135
  40. Immune complex formation and in situ B-cell clonal expansion in human cerebral cavernous malformations. J Neuroimmunol. 2014 Jul 15; 272(1-2):67-75.
    View in: PubMed
    Score: 0.133
  41. Dynamic permeability and quantitative susceptibility: related imaging biomarkers in cerebral cavernous malformations. Stroke. 2014 Feb; 45(2):598-601.
    View in: PubMed
    Score: 0.129
  42. Fasudil decreases lesion burden in a murine model of cerebral cavernous malformation disease. Stroke. 2012 Feb; 43(2):571-4.
    View in: PubMed
    Score: 0.112
  43. Cerebral cavernous malformations as a disease of vascular permeability: from bench to bedside with caution. Neurosurg Focus. 2010 Sep; 29(3):E4.
    View in: PubMed
    Score: 0.103
  44. Immune response in human cerebral cavernous malformations. Stroke. 2009 May; 40(5):1659-65.
    View in: PubMed
    Score: 0.093
  45. Oligoclonal immune response in cerebral cavernous malformations. Laboratory investigation. J Neurosurg. 2007 Nov; 107(5):1023-6.
    View in: PubMed
    Score: 0.085
  46. Cerebral cavernous malformations: clinical insights from genetic studies. Neurosurg Focus. 2006 Jul 15; 21(1):e1.
    View in: PubMed
    Score: 0.078
  47. Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous malformation lesion. Stroke. 2005 Apr; 36(4):872-4.
    View in: PubMed
    Score: 0.070
  48. Pathobiology of human cerebrovascular malformations: basic mechanisms and clinical relevance. Neurosurgery. 2004 Jul; 55(1):1-16; discussion 16-7.
    View in: PubMed
    Score: 0.067
  49. Multidisciplinary coordinated care of hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu disease). Vasc Med. 2023 Apr; 28(2):153-165.
    View in: PubMed
    Score: 0.061
  50. Plasma metabolites with mechanistic and clinical links to the neurovascular disease cavernous angioma. Commun Med (Lond). 2023 Mar 03; 3(1):35.
    View in: PubMed
    Score: 0.061
  51. ?1 integrin monoclonal antibody treatment ameliorates cerebral cavernous malformations. FASEB J. 2022 Dec; 36(12):e22629.
    View in: PubMed
    Score: 0.060
  52. Astrocytes propel neurovascular dysfunction during cerebral cavernous malformation lesion formation. J Clin Invest. 2021 07 01; 131(13).
    View in: PubMed
    Score: 0.055
  53. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature. 2021 06; 594(7862):271-276.
    View in: PubMed
    Score: 0.054
  54. Cerebral cavernous malformations are driven by ADAMTS5 proteolysis of versican. J Exp Med. 2020 10 05; 217(10).
    View in: PubMed
    Score: 0.052
  55. Novel Murine Models of Cerebral Cavernous Malformations. Angiogenesis. 2020 11; 23(4):651-666.
    View in: PubMed
    Score: 0.051
  56. Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation. Sci Transl Med. 2019 11 27; 11(520).
    View in: PubMed
    Score: 0.049
  57. Biology of vascular malformations of the brain. Stroke. 2009 Dec; 40(12):e694-702.
    View in: PubMed
    Score: 0.049
  58. Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations. J Exp Med. 2017 Nov 06; 214(11):3331-3346.
    View in: PubMed
    Score: 0.042
  59. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017 05 18; 545(7654):305-310.
    View in: PubMed
    Score: 0.041
  60. Corrigendum: Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature. 2016 08 25; 536(7617):488.
    View in: PubMed
    Score: 0.038
  61. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature. 2016 Apr 07; 532(7597):122-6.
    View in: PubMed
    Score: 0.038
  62. Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet. 2014 Aug 15; 23(16):4357-70.
    View in: PubMed
    Score: 0.033
  63. A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. Hum Mol Genet. 2011 Jan 15; 20(2):211-22.
    View in: PubMed
    Score: 0.026
  64. Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med. 2010 Apr 12; 207(4):881-96.
    View in: PubMed
    Score: 0.025
  65. Cerebral cavernous malformations: somatic mutations in vascular endothelial cells. Neurosurgery. 2009 Jul; 65(1):138-44; discussion 144-5.
    View in: PubMed
    Score: 0.024
  66. Genomics of human intracranial aneurysm wall. Stroke. 2009 Apr; 40(4):1252-61.
    View in: PubMed
    Score: 0.023
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.