The University of Chicago Header Logo

Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Gene H. Kim and Valluvan Jeevanandam.
Connection Strength

3.452
  1. A successful heart and liver transplantation requiring intraoperative extracorporeal membrane oxygenation for primary cardiac allograft dysfunction in a patient with Fontan failure. J Card Surg. 2020 Jun; 35(6):1357-1359.
    View in: PubMed
    Score: 0.184
  2. The first-in-human experience with a minimally invasive, ambulatory, counterpulsation heart assist system for advanced congestive heart failure. J Heart Lung Transplant. 2018 01; 37(1):1-6.
    View in: PubMed
    Score: 0.155
  3. Atrial Arrhythmias and Electroanatomical Remodeling in Patients With Left Ventricular Assist Devices. J Am Heart Assoc. 2017 Mar 08; 6(3).
    View in: PubMed
    Score: 0.148
  4. The Subclavian Intraaortic Balloon Pump: A Compelling Bridge Device for Advanced Heart Failure. Ann Thorac Surg. 2015 Dec; 100(6):2151-7; discussion 2157-8.
    View in: PubMed
    Score: 0.133
  5. The prognostic role of advanced hemodynamic variables in patients with left ventricular assist devices. Artif Organs. 2023 Mar; 47(3):574-581.
    View in: PubMed
    Score: 0.055
  6. Outcomes From Three Decades of Infant and Pediatric Heart Transplantation. ASAIO J. 2021 09 01; 67(9):1051-1059.
    View in: PubMed
    Score: 0.051
  7. Simultaneous Heart-Liver Transplantation for Congenital Heart Disease in the United States: Rapidly Increasing With Acceptable Outcomes. Hepatology. 2021 04; 73(4):1464-1477.
    View in: PubMed
    Score: 0.049
  8. Short-Term Ventricular Structural Changes Following Left Ventricular Assist Device Implantation. ASAIO J. 2021 02 01; 67(2):169-176.
    View in: PubMed
    Score: 0.049
  9. Increased Rate of Pump Thrombosis and Cardioembolic Events Following Ventricular Tachycardia Ablation in Patients Supported With Left Ventricular Assist Devices. ASAIO J. 2020 Nov/Dec; 66(10):1127-1136.
    View in: PubMed
    Score: 0.048
  10. Impact of worsening of aortic insufficiency during HeartMate 3 LVAD support. Artif Organs. 2021 Mar; 45(3):297-302.
    View in: PubMed
    Score: 0.048
  11. Outcomes of Ambulatory Axillary Intraaortic Balloon Pump as a Bridge to Heart Transplantation. Ann Thorac Surg. 2021 04; 111(4):1264-1270.
    View in: PubMed
    Score: 0.047
  12. Correction to: A subcostal approach is favorable compared to sternotomy for left ventricular assist device exchange. J Artif Organs. 2020 Sep; 23(3):302.
    View in: PubMed
    Score: 0.047
  13. Neurohormonal Blockade During Left Ventricular Assist Device Support. ASAIO J. 2020 08; 66(8):881-885.
    View in: PubMed
    Score: 0.047
  14. Optimal cannula positioning of HeartMate 3 left ventricular assist device. Artif Organs. 2020 Dec; 44(12):e509-e519.
    View in: PubMed
    Score: 0.047
  15. Aortic Insufficiency During HeartMate 3 Left Ventricular Assist Device Support. J Card Fail. 2020 Oct; 26(10):863-869.
    View in: PubMed
    Score: 0.046
  16. Neurohormonal Blockade During Left Ventricular Assist Device Support. ASAIO J. 2020 May 19.
    View in: PubMed
    Score: 0.046
  17. Hemodynamic Effects of Concomitant Mitral Valve Surgery and Left Ventricular Assist Device Implantation. ASAIO J. 2020 04; 66(4):355-361.
    View in: PubMed
    Score: 0.046
  18. Decoupling Between Diastolic Pulmonary Artery and Pulmonary Capillary Wedge Pressures Is Associated With Right Ventricular Dysfunction and Hemocompatibility-Related Adverse Events in Patients With Left Ventricular Assist Devices. J Am Heart Assoc. 2020 04 07; 9(7):e014801.
    View in: PubMed
    Score: 0.046
  19. Increased Rate of Pump Thrombosis and Cardioembolic Events Following Ventricular Tachycardia Ablation in Patients Supported With Left Ventricular Assist Devices. ASAIO J. 2020 Mar 27.
    View in: PubMed
    Score: 0.046
  20. Short-Term Efficacy and Safety of Tolvaptan in Patients with Left Ventricular Assist Devices. ASAIO J. 2020 03; 66(3):253-257.
    View in: PubMed
    Score: 0.046
  21. Effect of Concomitant Tricuspid Valve Surgery With Left Ventricular Assist Device Implantation. Ann Thorac Surg. 2020 09; 110(3):918-924.
    View in: PubMed
    Score: 0.045
  22. HeartWare Ventricular Assist Device Cannula Position and Hemocompatibility-Related Adverse Events. Ann Thorac Surg. 2020 09; 110(3):911-917.
    View in: PubMed
    Score: 0.045
  23. Longitudinal Trajectories of Hemodynamics Following Left Ventricular Assist Device Implantation. J Card Fail. 2020 May; 26(5):383-390.
    View in: PubMed
    Score: 0.045
  24. HVAD Flow Waveform Estimates Left Ventricular Filling Pressure. J Card Fail. 2020 Apr; 26(4):342-348.
    View in: PubMed
    Score: 0.045
  25. Outcomes following left ventricular assist device exchange. J Card Surg. 2020 Mar; 35(3):591-597.
    View in: PubMed
    Score: 0.045
  26. Deep Y-Descent in Right Atrial Waveforms Following Left Ventricular Assist Device Implantation. J Card Fail. 2020 Apr; 26(4):360-367.
    View in: PubMed
    Score: 0.045
  27. Combined Left Ventricular Assist Device and Coronary Artery Bypass Grafting Surgery: Should We Bypass the Bypass? ASAIO J. 2020 01; 66(1):32-37.
    View in: PubMed
    Score: 0.045
  28. Estimation of Central Venous Pressure by Pacemaker Lead Impedances in Left Ventricular Assist Device Patients. ASAIO J. 2020 01; 66(1):49-54.
    View in: PubMed
    Score: 0.045
  29. Surgical device exchange provides improved clinical outcomes compared to medical therapy in treating continuous-flow left ventricular assist device thrombosis. Artif Organs. 2020 Apr; 44(4):367-374.
    View in: PubMed
    Score: 0.045
  30. Estimation of the Severity of Aortic Insufficiency by HVAD Flow Waveform. Ann Thorac Surg. 2020 03; 109(3):945-949.
    View in: PubMed
    Score: 0.045
  31. Metabolic Dysfunction in Continuous-Flow Left Ventricular Assist Devices Patients and Outcomes. J Am Heart Assoc. 2019 11 19; 8(22):e013278.
    View in: PubMed
    Score: 0.045
  32. Hemodynamics of concomitant tricuspid valve procedures at LVAD implantation. J Card Surg. 2019 Dec; 34(12):1511-1518.
    View in: PubMed
    Score: 0.045
  33. Increasing heart transplant donor pool by liberalization of size matching. J Heart Lung Transplant. 2019 11; 38(11):1197-1205.
    View in: PubMed
    Score: 0.044
  34. Discordance Between Clinical Assessment and Invasive Hemodynamics in Patients With Advanced Heart Failure. J Card Fail. 2020 Feb; 26(2):128-135.
    View in: PubMed
    Score: 0.044
  35. Aortic Insufficiency and Hemocompatibility-related Adverse Events in Patients with Left Ventricular Assist Devices. J Card Fail. 2019 Oct; 25(10):787-794.
    View in: PubMed
    Score: 0.044
  36. Molecular Mechanism of the Association Between Atrial Fibrillation and Heart Failure Includes Energy Metabolic Dysregulation Due to Mitochondrial Dysfunction. J Card Fail. 2019 Nov; 25(11):911-920.
    View in: PubMed
    Score: 0.044
  37. Simultaneous heart, liver and kidney transplantation: A viable option for heart failure patients with multiorgan failure. J Heart Lung Transplant. 2019 09; 38(9):997-999.
    View in: PubMed
    Score: 0.043
  38. Association of Inflow Cannula Position with Left Ventricular Unloading and Clinical Outcomes in Patients with HeartMate II Left Ventricular Assist Device. ASAIO J. 2019 May/Jun; 65(4):331-335.
    View in: PubMed
    Score: 0.043
  39. A subcostal approach is favorable compared to sternotomy for left ventricular assist device exchange field of research: artificial heart (clinical). J Artif Organs. 2019 Sep; 22(3):181-187.
    View in: PubMed
    Score: 0.043
  40. Optimal Hemodynamics During Left Ventricular Assist Device Support Are Associated With Reduced Readmission Rates. Circ Heart Fail. 2019 02; 12(2):e005094.
    View in: PubMed
    Score: 0.042
  41. Outflow Cannula Systolic Slope in Patients With Left Ventricular Assist Devices: A Novel Marker of Myocardial Contractility. ASAIO J. 2019 02; 65(2):160-166.
    View in: PubMed
    Score: 0.042
  42. Home Inotropes in Patients Supported with Left Ventricular Assist Devices. ASAIO J. 2019 01; 65(1):e7-e11.
    View in: PubMed
    Score: 0.042
  43. Optimal haemodynamics during left ventricular assist device support are associated with reduced haemocompatibility-related adverse events. Eur J Heart Fail. 2019 05; 21(5):655-662.
    View in: PubMed
    Score: 0.042
  44. Improvement in Biventricular Cardiac Function After Ambulatory Counterpulsation. J Card Fail. 2019 Jan; 25(1):20-26.
    View in: PubMed
    Score: 0.042
  45. Repeated Ramp Tests on Stable LVAD Patients Reveal Patient-Specific Hemodynamic Fingerprint. ASAIO J. 2018 Nov/Dec; 64(6):701-707.
    View in: PubMed
    Score: 0.042
  46. Left Atrial Appendage Occlusion With Left Ventricular Assist Device Decreases Thromboembolic Events. Ann Thorac Surg. 2019 04; 107(4):1181-1186.
    View in: PubMed
    Score: 0.041
  47. Omega-3 Therapy Is Associated With Reduced Gastrointestinal Bleeding in Patients With Continuous-Flow Left Ventricular Assist Device. Circ Heart Fail. 2018 10; 11(10):e005082.
    View in: PubMed
    Score: 0.041
  48. Impact of Residual Valve Disease on Survival After Implantation of Left Ventricular Assist Devices. Ann Thorac Surg. 2018 12; 106(6):1789-1796.
    View in: PubMed
    Score: 0.041
  49. Decoupling Between Diastolic Pulmonary Arterial Pressure and Pulmonary Arterial Wedge Pressure at Incremental Left Ventricular Assist Device (LVAD) Speeds Is Associated With Worse Prognosis After LVAD Implantation. J Card Fail. 2018 Sep; 24(9):575-582.
    View in: PubMed
    Score: 0.041
  50. Residual native left ventricular function optimization using quantitative 3D echocardiographic assessment of rotational mechanics in patients with left ventricular assist devices. Echocardiography. 2018 10; 35(10):1606-1615.
    View in: PubMed
    Score: 0.041
  51. Echocardiographic Predictors of Hemodynamics in Patients Supported With Left Ventricular Assist Devices. J Card Fail. 2018 Sep; 24(9):561-567.
    View in: PubMed
    Score: 0.041
  52. Increase in short-term risk of rejection in heart transplant patients receiving granulocyte colony-stimulating factor. J Heart Lung Transplant. 2018 11; 37(11):1322-1328.
    View in: PubMed
    Score: 0.041
  53. Increased Risk of Bleeding in Left Ventricular Assist Device Patients Treated with Enoxaparin as Bridge to Therapeutic International Normalized Ratio. ASAIO J. 2018 Mar/Apr; 64(2):140-146.
    View in: PubMed
    Score: 0.040
  54. Long-Acting Octreotide Reduces the Recurrence of Gastrointestinal Bleeding in Patients With a Continuous-Flow Left Ventricular Assist Device. J Card Fail. 2018 Apr; 24(4):249-254.
    View in: PubMed
    Score: 0.040
  55. Predictors of Hemodynamic Improvement and Stabilization Following Intraaortic Balloon Pump Implantation in Patients With Advanced Heart Failure. J Invasive Cardiol. 2018 02; 30(2):56-61.
    View in: PubMed
    Score: 0.039
  56. Consequences of Retained Defibrillator and Pacemaker Leads After Heart Transplantation-An Underrecognized Problem. J Card Fail. 2018 02; 24(2):101-108.
    View in: PubMed
    Score: 0.039
  57. HVAD Waveform Analysis as a Noninvasive Marker of Pulmonary Capillary Wedge Pressure: A First Step Toward the Development of a Smart Left Ventricular Assist Device Pump. ASAIO J. 2018 Jan/Feb; 64(1):10-15.
    View in: PubMed
    Score: 0.039
  58. Cannula and Pump Positions Are Associated With Left Ventricular Unloading and Clinical Outcome in Patients With HeartWare Left Ventricular Assist Device. J Card Fail. 2018 03; 24(3):159-166.
    View in: PubMed
    Score: 0.039
  59. Decoupling Between Diastolic Pulmonary Artery Pressure and Pulmonary Capillary Wedge Pressure as a Prognostic Factor After Continuous Flow Ventricular Assist Device Implantation. Circ Heart Fail. 2017 Sep; 10(9).
    View in: PubMed
    Score: 0.038
  60. The Hemodynamic Effects of Aortic Insufficiency in Patients Supported With Continuous-Flow Left Ventricular Assist Devices. J Card Fail. 2017 Jul; 23(7):545-551.
    View in: PubMed
    Score: 0.037
  61. 3D Morphological Changes in LV and RV During LVAD Ramp Studies. JACC Cardiovasc Imaging. 2018 02; 11(2 Pt 1):159-169.
    View in: PubMed
    Score: 0.037
  62. Surgically Corrected Mitral Regurgitation During Left Ventricular Assist Device Implantation Is Associated With Low Recurrence Rate and Improved Midterm Survival. Ann Thorac Surg. 2017 Mar; 103(3):725-733.
    View in: PubMed
    Score: 0.036
  63. Elevated Angiopoietin-2 Level in Patients With Continuous-Flow Left Ventricular Assist Devices Leads to Altered Angiogenesis and Is Associated With Higher Nonsurgical Bleeding. Circulation. 2016 Jul 12; 134(2):141-52.
    View in: PubMed
    Score: 0.035
  64. Left Ventricular Assist Device Deactivation via Percutaneous Closure of the Outflow Graft. J Card Fail. 2016 Aug; 22(8):653-5.
    View in: PubMed
    Score: 0.035
  65. Screening for Outflow Cannula Malfunction of Left Ventricular Assist Devices (LVADs) With the Use of Doppler Echocardiography: New LVAD-Specific Reference Values for Contemporary Devices. J Card Fail. 2016 Oct; 22(10):808-14.
    View in: PubMed
    Score: 0.035
  66. Novel echocardiographic parameters of aortic insufficiency in continuous-flow left ventricular assist devices and clinical outcome. J Heart Lung Transplant. 2016 08; 35(8):976-85.
    View in: PubMed
    Score: 0.035
  67. Hemodynamic Ramp Tests in Patients With Left Ventricular Assist Devices. JACC Heart Fail. 2016 Mar; 4(3):208-17.
    View in: PubMed
    Score: 0.034
  68. Accurate Quantification Methods for Aortic Insufficiency Severity in Patients With LVAD: Role of Diastolic Flow Acceleration and Systolic-to-Diastolic Peak Velocity Ratio of Outflow Cannula. JACC Cardiovasc Imaging. 2016 06; 9(6):641-51.
    View in: PubMed
    Score: 0.034
  69. Successful percutaneous trans-catheter treatment of left ventricular assist device outflow graft stenosis with a covered stent. ESC Heart Fail. 2015 Jun; 2(2):100-102.
    View in: PubMed
    Score: 0.033
  70. Positional obstruction of the superior mesenteric artery by an intra-aortic balloon pump placed through subclavian artery approach. Circ Heart Fail. 2014 Sep; 7(5):864-7.
    View in: PubMed
    Score: 0.031
  71. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med. 2012 Nov; 18(11):1643-50.
    View in: PubMed
    Score: 0.027
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.