The University of Chicago Header Logo

Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Sara Kalantari and Gene H. Kim.
Connection Strength

1.536
  1. Corrigendum to 'Reverse Remodeling Effects of Sacubitril-Valsartan: Structural and Functional Optimization in Stage C Heart Failure' [American Journal of Cardiology 210 (2024) 249-255]. Am J Cardiol. 2024 May 01; 218:127.
    View in: PubMed
    Score: 0.234
  2. The prognostic role of advanced hemodynamic variables in patients with left ventricular assist devices. Artif Organs. 2023 Mar; 47(3):574-581.
    View in: PubMed
    Score: 0.054
  3. Aortic pulsatility index predicts clinical outcomes in heart failure: a sub-analysis of the ESCAPE trial. ESC Heart Fail. 2021 04; 8(2):1522-1530.
    View in: PubMed
    Score: 0.048
  4. Increased Rate of Pump Thrombosis and Cardioembolic Events Following Ventricular Tachycardia Ablation in Patients Supported With Left Ventricular Assist Devices. ASAIO J. 2020 Nov/Dec; 66(10):1127-1136.
    View in: PubMed
    Score: 0.047
  5. Outcomes of Ambulatory Axillary Intraaortic Balloon Pump as a Bridge to Heart Transplantation. Ann Thorac Surg. 2021 04; 111(4):1264-1270.
    View in: PubMed
    Score: 0.047
  6. Decoupling Between Diastolic Pulmonary Artery and Pulmonary Capillary Wedge Pressures Is Associated With Right Ventricular Dysfunction and Hemocompatibility-Related Adverse Events in Patients With Left Ventricular Assist Devices. J Am Heart Assoc. 2020 04 07; 9(7):e014801.
    View in: PubMed
    Score: 0.045
  7. Increased Rate of Pump Thrombosis and Cardioembolic Events Following Ventricular Tachycardia Ablation in Patients Supported With Left Ventricular Assist Devices. ASAIO J. 2020 Mar 27.
    View in: PubMed
    Score: 0.045
  8. Short-Term Efficacy and Safety of Tolvaptan in Patients with Left Ventricular Assist Devices. ASAIO J. 2020 03; 66(3):253-257.
    View in: PubMed
    Score: 0.045
  9. Effect of Concomitant Tricuspid Valve Surgery With Left Ventricular Assist Device Implantation. Ann Thorac Surg. 2020 09; 110(3):918-924.
    View in: PubMed
    Score: 0.045
  10. HeartWare Ventricular Assist Device Cannula Position and Hemocompatibility-Related Adverse Events. Ann Thorac Surg. 2020 09; 110(3):911-917.
    View in: PubMed
    Score: 0.045
  11. Deep Y-Descent in Right Atrial Waveforms Following Left Ventricular Assist Device Implantation. J Card Fail. 2020 Apr; 26(4):360-367.
    View in: PubMed
    Score: 0.045
  12. Estimation of Central Venous Pressure by Pacemaker Lead Impedances in Left Ventricular Assist Device Patients. ASAIO J. 2020 01; 66(1):49-54.
    View in: PubMed
    Score: 0.045
  13. Surgical device exchange provides improved clinical outcomes compared to medical therapy in treating continuous-flow left ventricular assist device thrombosis. Artif Organs. 2020 Apr; 44(4):367-374.
    View in: PubMed
    Score: 0.044
  14. Estimation of the Severity of Aortic Insufficiency by HVAD Flow Waveform. Ann Thorac Surg. 2020 03; 109(3):945-949.
    View in: PubMed
    Score: 0.044
  15. Metabolic Dysfunction in Continuous-Flow Left Ventricular Assist Devices Patients and Outcomes. J Am Heart Assoc. 2019 11 19; 8(22):e013278.
    View in: PubMed
    Score: 0.044
  16. Hemodynamics of concomitant tricuspid valve procedures at LVAD implantation. J Card Surg. 2019 Dec; 34(12):1511-1518.
    View in: PubMed
    Score: 0.044
  17. Echocardiographic evaluation of the effects of sacubitril-valsartan on vascular properties in heart failure patients. Int J Cardiovasc Imaging. 2020 Feb; 36(2):271-278.
    View in: PubMed
    Score: 0.044
  18. Discordance Between Clinical Assessment and Invasive Hemodynamics in Patients With Advanced Heart Failure. J Card Fail. 2020 Feb; 26(2):128-135.
    View in: PubMed
    Score: 0.043
  19. Aortic Insufficiency and Hemocompatibility-related Adverse Events in Patients with Left Ventricular Assist Devices. J Card Fail. 2019 Oct; 25(10):787-794.
    View in: PubMed
    Score: 0.043
  20. Optimal Hemodynamics During Left Ventricular Assist Device Support Are Associated With Reduced Readmission Rates. Circ Heart Fail. 2019 02; 12(2):e005094.
    View in: PubMed
    Score: 0.042
  21. Outflow Cannula Systolic Slope in Patients With Left Ventricular Assist Devices: A Novel Marker of Myocardial Contractility. ASAIO J. 2019 02; 65(2):160-166.
    View in: PubMed
    Score: 0.042
  22. Optimal haemodynamics during left ventricular assist device support are associated with reduced haemocompatibility-related adverse events. Eur J Heart Fail. 2019 05; 21(5):655-662.
    View in: PubMed
    Score: 0.041
  23. Relationship Between Noninvasive Assessment of Lung Fluid Volume and Invasively Measured Cardiac Hemodynamics. J Am Heart Assoc. 2018 11 20; 7(22):e009175.
    View in: PubMed
    Score: 0.041
  24. Improvement in Biventricular Cardiac Function After Ambulatory Counterpulsation. J Card Fail. 2019 Jan; 25(1):20-26.
    View in: PubMed
    Score: 0.041
  25. Omega-3 Therapy Is Associated With Reduced Gastrointestinal Bleeding in Patients With Continuous-Flow Left Ventricular Assist Device. Circ Heart Fail. 2018 10; 11(10):e005082.
    View in: PubMed
    Score: 0.041
  26. Decoupling Between Diastolic Pulmonary Arterial Pressure and Pulmonary Arterial Wedge Pressure at Incremental Left Ventricular Assist Device (LVAD) Speeds Is Associated With Worse Prognosis After LVAD Implantation. J Card Fail. 2018 Sep; 24(9):575-582.
    View in: PubMed
    Score: 0.040
  27. Echocardiographic Predictors of Hemodynamics in Patients Supported With Left Ventricular Assist Devices. J Card Fail. 2018 Sep; 24(9):561-567.
    View in: PubMed
    Score: 0.040
  28. Increase in short-term risk of rejection in heart transplant patients receiving granulocyte colony-stimulating factor. J Heart Lung Transplant. 2018 11; 37(11):1322-1328.
    View in: PubMed
    Score: 0.040
  29. Consequences of Retained Defibrillator and Pacemaker Leads After Heart Transplantation-An Underrecognized Problem. J Card Fail. 2018 02; 24(2):101-108.
    View in: PubMed
    Score: 0.039
  30. HVAD Waveform Analysis as a Noninvasive Marker of Pulmonary Capillary Wedge Pressure: A First Step Toward the Development of a Smart Left Ventricular Assist Device Pump. ASAIO J. 2018 Jan/Feb; 64(1):10-15.
    View in: PubMed
    Score: 0.039
  31. Cardiac Output Assessment in Patients Supported with Left Ventricular Assist Device: Discordance Between Thermodilution and Indirect Fick Cardiac Output Measurements. ASAIO J. 2017 Jul/Aug; 63(4):433-437.
    View in: PubMed
    Score: 0.037
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.