The University of Chicago Header Logo

Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Sara Kalantari and Takeyoshi Ota.
Connection Strength

2.094
  1. Clinical outcomes of grafted vs. percutaneous axillary intra-aortic balloon pump support as a bridge to transplantation: a propensity score-matched analysis. Heart Vessels. 2022 Dec; 37(12):1995-2001.
    View in: PubMed
    Score: 0.221
  2. Comparing short-term/long-term outcomes of heart transplants that occur inside and outside of normal working hours. ESC Heart Fail. 2022 08; 9(4):2484-2490.
    View in: PubMed
    Score: 0.218
  3. Significant vascular complications in percutaneous axillary intra-aortic balloon pump. Ann Vasc Surg. 2022 Jul; 83:42-52.
    View in: PubMed
    Score: 0.213
  4. Proximal ascending aorta size is associated with the incidence of de novo aortic insufficiency with left ventricular assist device. Heart Vessels. 2022 Apr; 37(4):647-653.
    View in: PubMed
    Score: 0.209
  5. Outcomes of Ambulatory Axillary Intraaortic Balloon Pump as a Bridge to Heart Transplantation. Ann Thorac Surg. 2021 04; 111(4):1264-1270.
    View in: PubMed
    Score: 0.194
  6. Surgical device exchange provides improved clinical outcomes compared to medical therapy in treating continuous-flow left ventricular assist device thrombosis. Artif Organs. 2020 Apr; 44(4):367-374.
    View in: PubMed
    Score: 0.185
  7. Postoperative tolvaptan use in left ventricular assist device patients: The TOLVAD randomized pilot study. Artif Organs. 2022 Sep 15.
    View in: PubMed
    Score: 0.056
  8. Decoupling Between Diastolic Pulmonary Artery and Pulmonary Capillary Wedge Pressures Is Associated With Right Ventricular Dysfunction and Hemocompatibility-Related Adverse Events in Patients With Left Ventricular Assist Devices. J Am Heart Assoc. 2020 04 07; 9(7):e014801.
    View in: PubMed
    Score: 0.047
  9. Effect of Concomitant Tricuspid Valve Surgery With Left Ventricular Assist Device Implantation. Ann Thorac Surg. 2020 09; 110(3):918-924.
    View in: PubMed
    Score: 0.047
  10. HeartWare Ventricular Assist Device Cannula Position and Hemocompatibility-Related Adverse Events. Ann Thorac Surg. 2020 09; 110(3):911-917.
    View in: PubMed
    Score: 0.047
  11. Deep Y-Descent in Right Atrial Waveforms Following Left Ventricular Assist Device Implantation. J Card Fail. 2020 Apr; 26(4):360-367.
    View in: PubMed
    Score: 0.046
  12. Estimation of Central Venous Pressure by Pacemaker Lead Impedances in Left Ventricular Assist Device Patients. ASAIO J. 2020 01; 66(1):49-54.
    View in: PubMed
    Score: 0.046
  13. Omega-3 and hemocompatibility-related adverse events. J Card Surg. 2020 Feb; 35(2):405-412.
    View in: PubMed
    Score: 0.046
  14. Estimation of the Severity of Aortic Insufficiency by HVAD Flow Waveform. Ann Thorac Surg. 2020 03; 109(3):945-949.
    View in: PubMed
    Score: 0.046
  15. Hemodynamics of concomitant tricuspid valve procedures at LVAD implantation. J Card Surg. 2019 Dec; 34(12):1511-1518.
    View in: PubMed
    Score: 0.046
  16. Aortic Insufficiency and Hemocompatibility-related Adverse Events in Patients with Left Ventricular Assist Devices. J Card Fail. 2019 Oct; 25(10):787-794.
    View in: PubMed
    Score: 0.045
  17. Optimal Hemodynamics During Left Ventricular Assist Device Support Are Associated With Reduced Readmission Rates. Circ Heart Fail. 2019 02; 12(2):e005094.
    View in: PubMed
    Score: 0.044
  18. Outflow Cannula Systolic Slope in Patients With Left Ventricular Assist Devices: A Novel Marker of Myocardial Contractility. ASAIO J. 2019 02; 65(2):160-166.
    View in: PubMed
    Score: 0.044
  19. Optimal haemodynamics during left ventricular assist device support are associated with reduced haemocompatibility-related adverse events. Eur J Heart Fail. 2019 05; 21(5):655-662.
    View in: PubMed
    Score: 0.043
  20. Improvement in Biventricular Cardiac Function After Ambulatory Counterpulsation. J Card Fail. 2019 Jan; 25(1):20-26.
    View in: PubMed
    Score: 0.043
  21. Omega-3 Therapy Is Associated With Reduced Gastrointestinal Bleeding in Patients With Continuous-Flow Left Ventricular Assist Device. Circ Heart Fail. 2018 10; 11(10):e005082.
    View in: PubMed
    Score: 0.043
  22. Decoupling Between Diastolic Pulmonary Arterial Pressure and Pulmonary Arterial Wedge Pressure at Incremental Left Ventricular Assist Device (LVAD) Speeds Is Associated With Worse Prognosis After LVAD Implantation. J Card Fail. 2018 Sep; 24(9):575-582.
    View in: PubMed
    Score: 0.042
  23. Echocardiographic Predictors of Hemodynamics in Patients Supported With Left Ventricular Assist Devices. J Card Fail. 2018 Sep; 24(9):561-567.
    View in: PubMed
    Score: 0.042
  24. Consequences of Retained Defibrillator and Pacemaker Leads After Heart Transplantation-An Underrecognized Problem. J Card Fail. 2018 02; 24(2):101-108.
    View in: PubMed
    Score: 0.040
  25. HVAD Waveform Analysis as a Noninvasive Marker of Pulmonary Capillary Wedge Pressure: A First Step Toward the Development of a Smart Left Ventricular Assist Device Pump. ASAIO J. 2018 Jan/Feb; 64(1):10-15.
    View in: PubMed
    Score: 0.040
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.