The University of Chicago Header Logo

Connection

Andrew Hipp to Phylogeny

This is a "connection" page, showing publications Andrew Hipp has written about Phylogeny.
Connection Strength

3.869
  1. Phylogeny in the service of ecological restoration. Am J Bot. 2015 May; 102(5):647-8.
    View in: PubMed
    Score: 0.358
  2. Genotyping-by-sequencing as a tool to infer phylogeny and ancestral hybridization: a case study in Carex (Cyperaceae). Mol Phylogenet Evol. 2014 Oct; 79:359-67.
    View in: PubMed
    Score: 0.337
  3. A framework phylogeny of the American oak clade based on sequenced RAD data. PLoS One. 2014; 9(4):e93975.
    View in: PubMed
    Score: 0.331
  4. Shifts in diversification rates and clade ages explain species richness in higher-level sedge taxa (Cyperaceae). Am J Bot. 2013 Dec; 100(12):2403-11.
    View in: PubMed
    Score: 0.323
  5. Accelerated evolutionary rates in tropical and oceanic parmelioid lichens (Ascomycota). BMC Evol Biol. 2008 Sep 22; 8:257.
    View in: PubMed
    Score: 0.226
  6. Phylogeny and biogeography of Croton alabamensis (Euphorbiaceae), a rare shrub from Texas and Alabama, using DNA sequence and AFLP data. Mol Ecol. 2006 Sep; 15(10):2735-51.
    View in: PubMed
    Score: 0.196
  7. Evolutionary history shapes grassland productivity through opposing effects on complementarity and selection. Ecology. 2023 08; 104(8):e4129.
    View in: PubMed
    Score: 0.157
  8. Oaks: an evolutionary success story. New Phytol. 2020 05; 226(4):987-1011.
    View in: PubMed
    Score: 0.123
  9. Genomic landscape of the global oak phylogeny. New Phytol. 2020 05; 226(4):1198-1212.
    View in: PubMed
    Score: 0.122
  10. Uncovering the genomic signature of ancient introgression between white oak lineages (Quercus). New Phytol. 2020 05; 226(4):1158-1170.
    View in: PubMed
    Score: 0.118
  11. The role of diversification in community assembly of the oaks (Quercus L.) across the continental U.S. Am J Bot. 2018 03; 105(3):565-586.
    View in: PubMed
    Score: 0.110
  12. Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): Insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Mol Phylogenet Evol. 2018 02; 119:170-181.
    View in: PubMed
    Score: 0.107
  13. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytol. 2018 Jan; 217(1):439-452.
    View in: PubMed
    Score: 0.105
  14. The Evolution of Tree Diversity: Proceedings of the 2016 IUFRO Genomics and Forest Tree Genetics Conference, Phylogenetics and Genomic Evolution Session, Arcachon, France. Genome. 2017 09; 60(9):v-vi.
    View in: PubMed
    Score: 0.105
  15. A genetic legacy of introgression confounds phylogeny and biogeography in oaks. Proc Biol Sci. 2017 May 17; 284(1854).
    View in: PubMed
    Score: 0.103
  16. Historical introgression among the American live oaks and the comparative nature of tests for introgression. Evolution. 2015 Oct; 69(10):2587-601.
    View in: PubMed
    Score: 0.092
  17. Native plant diversity increases herbivory to non-natives. Proc Biol Sci. 2014 11 07; 281(1794):20141841.
    View in: PubMed
    Score: 0.086
  18. Species coherence in the face of karyotype diversification in holocentric organisms: the case of a cytogenetically variable sedge (Carex scoparia, Cyperaceae). Ann Bot. 2013 Aug; 112(3):515-26.
    View in: PubMed
    Score: 0.078
  19. Global patterns of leaf defenses in oak species. Evolution. 2012 Jul; 66(7):2272-86.
    View in: PubMed
    Score: 0.072
  20. A novel comparative method for identifying shifts in the rate of character evolution on trees. Evolution. 2011 Dec; 65(12):3578-89.
    View in: PubMed
    Score: 0.069
  21. Dynamics of chromosome number and genome size variation in a cytogenetically variable sedge (Carex scoparia var. scoparia, Cyperaceae). Am J Bot. 2011 Jan; 98(1):122-9.
    View in: PubMed
    Score: 0.066
  22. Karyotype stability and predictors of chromosome number variation in sedges: a study in Carex section Spirostachyae (Cyperaceae). Mol Phylogenet Evol. 2010 Oct; 57(1):353-63.
    View in: PubMed
    Score: 0.064
  23. A Bayesian model of AFLP marker evolution and phylogenetic inference. Stat Appl Genet Mol Biol. 2007; 6:Article11.
    View in: PubMed
    Score: 0.051
  24. Niche evolution in a northern temperate tree lineage: biogeographical legacies in cork oaks (Quercus section Cerris). Ann Bot. 2023 05 15; 131(5):769-787.
    View in: PubMed
    Score: 0.039
  25. Addressing inconsistencies in Cyperaceae and Juncaceae taxonomy: Comment on Brožová et al. (2022). Mol Phylogenet Evol. 2023 02; 179:107665.
    View in: PubMed
    Score: 0.038
  26. A snapshot of progenitor-derivative speciation in Iberodes (Boraginaceae). Mol Ecol. 2022 06; 31(11):3192-3209.
    View in: PubMed
    Score: 0.036
  27. Phylogenetic distance and resource availability mediate direction and strength of plant interactions in a competition experiment. Oecologia. 2021 Oct; 197(2):459-469.
    View in: PubMed
    Score: 0.035
  28. Climate and phylogenetic history structure morphological and architectural trait variation among fine-root orders. New Phytol. 2020 12; 228(6):1824-1834.
    View in: PubMed
    Score: 0.032
  29. Ancient events and climate adaptive capacity shaped distinct chloroplast genetic structure in the oak lineages. BMC Evol Biol. 2019 11 04; 19(1):202.
    View in: PubMed
    Score: 0.031
  30. Gaining a global perspective on Fagaceae genomic diversification and adaptation. New Phytol. 2018 05; 218(3):894-897.
    View in: PubMed
    Score: 0.027
  31. The evolution and diversification of the red oaks of the California Floristic Province (Quercus section Lobatae, series Agrifoliae). Am J Bot. 2017 10; 104(10):1581-1595.
    View in: PubMed
    Score: 0.026
  32. Allopatric speciation despite historical gene flow: Divergence and hybridization in Carex furva and C. lucennoiberica (Cyperaceae) inferred from plastid and nuclear RAD-seq data. Mol Ecol. 2017 Oct; 26(20):5646-5662.
    View in: PubMed
    Score: 0.026
  33. Phylogenomics reveals a complex evolutionary history of lobed-leaf white oaks in western North America. Genome. 2017 Sep; 60(9):733-742.
    View in: PubMed
    Score: 0.026
  34. A time and a place for everything: phylogenetic history and geography as joint predictors of oak plastome phylogeny. Genome. 2017 Sep; 60(9):720-732.
    View in: PubMed
    Score: 0.026
  35. Phylogenomic inferences from reference-mapped and de novo assembled short-read sequence data using RADseq sequencing of California white oaks (Quercus section Quercus). Genome. 2017 Sep; 60(9):743-755.
    View in: PubMed
    Score: 0.025
  36. Keeping All the PIECES: Phylogenetically Informed Ex Situ Conservation of Endangered Species. PLoS One. 2016; 11(6):e0156973.
    View in: PubMed
    Score: 0.024
  37. Phylogeny, systematics, and trait evolution of Carex section Glareosae. Am J Bot. 2015 Jul; 102(7):1128-44.
    View in: PubMed
    Score: 0.023
  38. Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes. PLoS One. 2014; 9(1):e85266.
    View in: PubMed
    Score: 0.020
  39. Selection and inertia in the evolution of holocentric chromosomes in sedges (Carex, Cyperaceae). New Phytol. 2012 Jul; 195(1):237-47.
    View in: PubMed
    Score: 0.018
  40. Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae). Mol Phylogenet Evol. 2012 Jun; 63(3):650-5.
    View in: PubMed
    Score: 0.018
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.