The University of Chicago Header Logo

Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Jeffrey Hubbell and Melody Swartz.
Connection Strength

6.743
  1. Trojan horses for immunotherapy. Nat Nanotechnol. 2019 03; 14(3):196-197.
    View in: PubMed
    Score: 0.659
  2. Lymphatic drainage function and its immunological implications: from dendritic cell homing to vaccine design. Semin Immunol. 2008 Apr; 20(2):147-56.
    View in: PubMed
    Score: 0.305
  3. Engineered GM-CSF polarizes protumorigenic tumor-associated macrophages to an antitumorigenic phenotype and potently synergizes with IL-12 immunotherapy. J Immunother Cancer. 2024 Dec 22; 12(12).
    View in: PubMed
    Score: 0.246
  4. Engineered IL-7 synergizes with IL-12 immunotherapy to prevent T cell exhaustion and promote memory without exacerbating toxicity. Sci Adv. 2023 12; 9(48):eadh9879.
    View in: PubMed
    Score: 0.229
  5. Tumor Cell-Surface Binding of Immune Stimulating Polymeric Glyco-Adjuvant via Cysteine-Reactive Pyridyl Disulfide Promotes Antitumor Immunity. ACS Cent Sci. 2022 Oct 26; 8(10):1435-1446.
    View in: PubMed
    Score: 0.211
  6. Severe COVID-19 induces autoantibodies against angiotensin II that correlate with blood pressure dysregulation and disease severity. Sci Adv. 2022 10 07; 8(40):eabn3777.
    View in: PubMed
    Score: 0.211
  7. Masking the immunotoxicity of interleukin-12 by fusing it with a domain of its receptor via a tumour-protease-cleavable linker. Nat Biomed Eng. 2022 07; 6(7):819-829.
    View in: PubMed
    Score: 0.205
  8. SARS-CoV-2 infection induces cross-reactive autoantibodies against angiotensin II. medRxiv. 2021 Nov 02.
    View in: PubMed
    Score: 0.198
  9. Overcoming transport barriers to immunotherapy. Drug Deliv Transl Res. 2021 12; 11(6):2273-2275.
    View in: PubMed
    Score: 0.198
  10. Generation of potent cellular and humoral immunity against SARS-CoV-2 antigens via conjugation to a polymeric glyco-adjuvant. Biomaterials. 2021 11; 278:121159.
    View in: PubMed
    Score: 0.197
  11. Lymph Node-Targeted Synthetically Glycosylated Antigen Leads to Antigen-Specific Immunological Tolerance. Front Immunol. 2021; 12:714842.
    View in: PubMed
    Score: 0.197
  12. Polymersomes Decorated with the SARS-CoV-2 Spike Protein Receptor-Binding Domain Elicit Robust Humoral and Cellular Immunity. ACS Cent Sci. 2021 Aug 25; 7(8):1368-1380.
    View in: PubMed
    Score: 0.194
  13. Polymersomes decorated with SARS-CoV-2 spike protein receptor binding domain elicit robust humoral and cellular immunity. bioRxiv. 2021 Apr 08.
    View in: PubMed
    Score: 0.191
  14. Lymphangiogenesis-inducing vaccines elicit potent and long-lasting T cell immunity against melanomas. Sci Adv. 2021 03; 7(13).
    View in: PubMed
    Score: 0.190
  15. Suppression of Rheumatoid Arthritis by Enhanced Lymph Node Trafficking of Engineered Interleukin-10 in Murine Models. Arthritis Rheumatol. 2021 05; 73(5):769-778.
    View in: PubMed
    Score: 0.189
  16. Publisher Correction: Prolonged residence of an albumin-IL-4 fusion protein in secondary lymphoid organs ameliorates experimental autoimmune encephalomyelitis. Nat Biomed Eng. 2020 Nov; 4(11):1117.
    View in: PubMed
    Score: 0.185
  17. Prolonged residence of an albumin-IL-4 fusion protein in secondary lymphoid organs ameliorates experimental autoimmune encephalomyelitis. Nat Biomed Eng. 2021 05; 5(5):387-398.
    View in: PubMed
    Score: 0.184
  18. Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours. Nat Biomed Eng. 2020 05; 4(5):531-543.
    View in: PubMed
    Score: 0.178
  19. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019 12; 5(12):eaay1357.
    View in: PubMed
    Score: 0.174
  20. Targeted antibody and cytokine cancer immunotherapies through collagen affinity. Sci Transl Med. 2019 04 10; 11(487).
    View in: PubMed
    Score: 0.166
  21. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat Mater. 2019 02; 18(2):175-185.
    View in: PubMed
    Score: 0.163
  22. Improving Efficacy and Safety of Agonistic Anti-CD40 Antibody Through Extracellular Matrix Affinity. Mol Cancer Ther. 2018 11; 17(11):2399-2411.
    View in: PubMed
    Score: 0.158
  23. Oxidation-sensitive polymersomes as vaccine nanocarriers enhance humoral responses against Lassa virus envelope glycoprotein. Virology. 2017 12; 512:161-171.
    View in: PubMed
    Score: 0.149
  24. Local induction of lymphangiogenesis with engineered fibrin-binding VEGF-C promotes wound healing by increasing immune cell trafficking and matrix remodeling. Biomaterials. 2017 07; 131:160-175.
    View in: PubMed
    Score: 0.144
  25. Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses. J Allergy Clin Immunol. 2017 Nov; 140(5):1339-1350.
    View in: PubMed
    Score: 0.144
  26. Fibronectin EDA and CpG synergize to enhance antigen-specific Th1 and cytotoxic responses. Vaccine. 2016 05 05; 34(21):2453-2459.
    View in: PubMed
    Score: 0.134
  27. A Cationic Micelle Complex Improves CD8+ T Cell Responses in Vaccination Against Unmodified Protein Antigen. ACS Biomater Sci Eng. 2016 Feb 08; 2(2):231-240.
    View in: PubMed
    Score: 0.133
  28. VEGFR-3 neutralization inhibits ovarian lymphangiogenesis, follicle maturation, and murine pregnancy. Am J Pathol. 2013 Nov; 183(5):1596-1607.
    View in: PubMed
    Score: 0.113
  29. Engineering approaches to immunotherapy. Sci Transl Med. 2012 Aug 22; 4(148):148rv9.
    View in: PubMed
    Score: 0.105
  30. Materials engineering for immunomodulation. Nature. 2009 Nov 26; 462(7272):449-60.
    View in: PubMed
    Score: 0.087
  31. Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol. 2006 Dec; 27(12):573-9.
    View in: PubMed
    Score: 0.070
  32. Membrane-localized neoantigens predict the efficacy of cancer immunotherapy. Cell Rep Med. 2023 08 15; 4(8):101145.
    View in: PubMed
    Score: 0.056
  33. Engineering Targeting Materials for Therapeutic Cancer Vaccines. Front Bioeng Biotechnol. 2020; 8:19.
    View in: PubMed
    Score: 0.044
  34. Growth factors with enhanced syndecan binding generate tonic signalling and promote tissue healing. Nat Biomed Eng. 2020 04; 4(4):463-475.
    View in: PubMed
    Score: 0.043
  35. Combination of Synthetic Long Peptides and XCL1 Fusion Proteins Results in Superior Tumor Control. Front Immunol. 2019; 10:294.
    View in: PubMed
    Score: 0.041
  36. Matrix-binding checkpoint immunotherapies enhance antitumor efficacy and reduce adverse events. Sci Transl Med. 2017 Nov 08; 9(415).
    View in: PubMed
    Score: 0.038
  37. Vaccine nanocarriers: Coupling intracellular pathways and cellular biodistribution to control CD4 vs CD8 T cell responses. Biomaterials. 2017 07; 132:48-58.
    View in: PubMed
    Score: 0.036
  38. Primary Human and Rat ß-Cells Release the Intracellular Autoantigens GAD65, IA-2, and Proinsulin in Exosomes Together With Cytokine-Induced Enhancers of Immunity. Diabetes. 2017 02; 66(2):460-473.
    View in: PubMed
    Score: 0.035
  39. Nanoparticle conjugation enhances the immunomodulatory effects of intranasally delivered CpG in house dust mite-allergic mice. Sci Rep. 2015 Sep 21; 5:14274.
    View in: PubMed
    Score: 0.032
  40. 6-Thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumor-bearing mice. Cancer Immunol Immunother. 2015 Aug; 64(8):1033-46.
    View in: PubMed
    Score: 0.032
  41. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science. 2014 Feb 21; 343(6173):885-8.
    View in: PubMed
    Score: 0.029
  42. Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunol Res. 2014 May; 2(5):436-47.
    View in: PubMed
    Score: 0.029
  43. Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proc Natl Acad Sci U S A. 2013 Dec 03; 110(49):19902-7.
    View in: PubMed
    Score: 0.029
  44. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials. 2014 Jan; 35(2):814-24.
    View in: PubMed
    Score: 0.028
  45. The promotion of endothelial cell attachment and spreading using FNIII10 fused to VEGF-A165. Biomaterials. 2013 Aug; 34(24):5958-68.
    View in: PubMed
    Score: 0.028
  46. Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice. PLoS One. 2013; 8(4):e61646.
    View in: PubMed
    Score: 0.027
  47. Tunable T cell immunity towards a protein antigen using polymersomes vs. solid-core nanoparticles. Biomaterials. 2013 Jun; 34(17):4339-46.
    View in: PubMed
    Score: 0.027
  48. Nanoparticle size influences the magnitude and quality of mucosal immune responses after intranasal immunization. Vaccine. 2012 Dec 14; 30(52):7541-6.
    View in: PubMed
    Score: 0.027
  49. Polymer micelles with pyridyl disulfide-coupled antigen travel through lymphatics and show enhanced cellular responses following immunization. Acta Biomater. 2012 Sep; 8(9):3210-7.
    View in: PubMed
    Score: 0.026
  50. Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials. 2012 Sep; 33(26):6211-9.
    View in: PubMed
    Score: 0.026
  51. Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. Proc Natl Acad Sci U S A. 2011 Nov 01; 108(44):E989-97.
    View in: PubMed
    Score: 0.025
  52. PEG-b-PPS-b-PEI micelles and PEG-b-PPS/PEG-b-PPS-b-PEI mixed micelles as non-viral vectors for plasmid DNA: tumor immunotoxicity in B16F10 melanoma. Biomaterials. 2011 Dec; 32(36):9839-47.
    View in: PubMed
    Score: 0.025
  53. Nano-sized drug-loaded micelles deliver payload to lymph node immune cells and prolong allograft survival. J Control Release. 2011 Dec 10; 156(2):154-60.
    View in: PubMed
    Score: 0.024
  54. Nanoparticle conjugation and pulmonary delivery enhance the protective efficacy of Ag85B and CpG against tuberculosis. Vaccine. 2011 Sep 16; 29(40):6959-66.
    View in: PubMed
    Score: 0.024
  55. Engineering complement activation on polypropylene sulfide vaccine nanoparticles. Biomaterials. 2011 Mar; 32(8):2194-203.
    View in: PubMed
    Score: 0.023
  56. PPS nanoparticles as versatile delivery system to induce systemic and broad mucosal immunity after intranasal administration. Vaccine. 2011 Jan 17; 29(4):804-12.
    View in: PubMed
    Score: 0.023
  57. Antigen delivery to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: Cross-presentation and T cell activation. Vaccine. 2010 Nov 23; 28(50):7897-906.
    View in: PubMed
    Score: 0.023
  58. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol. 2007 Oct; 25(10):1159-64.
    View in: PubMed
    Score: 0.019
  59. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release. 2006 May 01; 112(1):26-34.
    View in: PubMed
    Score: 0.017
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.