The University of Chicago Header Logo

Connection

Edward Vogel to Attention

This is a "connection" page, showing publications Edward Vogel has written about Attention.
Connection Strength

11.442
  1. Pupillometry signatures of sustained attention and working memory. Atten Percept Psychophys. 2022 Nov; 84(8):2472-2482.
    View in: PubMed
    Score: 0.611
  2. Attention fluctuations impact ongoing maintenance of information in working memory. Psychon Bull Rev. 2020 Dec; 27(6):1269-1278.
    View in: PubMed
    Score: 0.539
  3. Real-time triggering reveals concurrent lapses of attention and working memory. Nat Hum Behav. 2019 08; 3(8):808-816.
    View in: PubMed
    Score: 0.485
  4. Dissecting the Neural Focus of Attention Reveals Distinct Processes for Spatial Attention and Object-Based Storage in Visual Working Memory. Psychol Sci. 2019 04; 30(4):526-540.
    View in: PubMed
    Score: 0.477
  5. Neural Evidence for the Contribution of Active Suppression During Working Memory Filtering. Cereb Cortex. 2019 02 01; 29(2):529-543.
    View in: PubMed
    Score: 0.475
  6. Contralateral Delay Activity Indexes Working Memory Storage, Not the Current Focus of Spatial Attention. J Cogn Neurosci. 2018 08; 30(8):1185-1196.
    View in: PubMed
    Score: 0.450
  7. Contralateral Delay Activity Tracks Fluctuations in Working Memory Performance. J Cogn Neurosci. 2018 09; 30(9):1229-1240.
    View in: PubMed
    Score: 0.441
  8. Confident failures: Lapses of working memory reveal a metacognitive blind spot. Atten Percept Psychophys. 2017 Jul; 79(5):1506-1523.
    View in: PubMed
    Score: 0.425
  9. Reducing failures of working memory with performance feedback. Psychon Bull Rev. 2016 10; 23(5):1520-1527.
    View in: PubMed
    Score: 0.404
  10. The contribution of attentional lapses to individual differences in visual working memory capacity. J Cogn Neurosci. 2015 Aug; 27(8):1601-16.
    View in: PubMed
    Score: 0.363
  11. Attention: feedback focuses a wandering mind. Nat Neurosci. 2015 Mar; 18(3):327-8.
    View in: PubMed
    Score: 0.362
  12. A soft handoff of attention between cerebral hemispheres. Curr Biol. 2014 May 19; 24(10):1133-7.
    View in: PubMed
    Score: 0.341
  13. Working memory and fluid intelligence: capacity, attention control, and secondary memory retrieval. Cogn Psychol. 2014 Jun; 71:1-26.
    View in: PubMed
    Score: 0.337
  14. Neural limits to representing objects still within view. J Neurosci. 2013 May 08; 33(19):8257-63.
    View in: PubMed
    Score: 0.319
  15. Swapping or dropping? Electrophysiological measures of difficulty during multiple object tracking. Cognition. 2013 Feb; 126(2):213-23.
    View in: PubMed
    Score: 0.308
  16. Neural measures of dynamic changes in attentive tracking load. J Cogn Neurosci. 2012 Feb; 24(2):440-50.
    View in: PubMed
    Score: 0.282
  17. Visual search demands dictate reliance on working memory storage. J Neurosci. 2011 Apr 20; 31(16):6199-207.
    View in: PubMed
    Score: 0.277
  18. Individual differences in recovery time from attentional capture. Psychol Sci. 2011 Mar; 22(3):361-8.
    View in: PubMed
    Score: 0.273
  19. Delineating the neural signatures of tracking spatial position and working memory during attentive tracking. J Neurosci. 2011 Jan 12; 31(2):659-68.
    View in: PubMed
    Score: 0.272
  20. Shape and color conjunction stimuli are represented as bound objects in visual working memory. Neuropsychologia. 2011 May; 49(6):1632-9.
    View in: PubMed
    Score: 0.270
  21. Human variation in overriding attentional capture. J Neurosci. 2009 Jul 08; 29(27):8726-33.
    View in: PubMed
    Score: 0.245
  22. Attentional enhancement during multiple-object tracking. Psychon Bull Rev. 2009 Apr; 16(2):411-7.
    View in: PubMed
    Score: 0.240
  23. Neural measures of individual differences in selecting and tracking multiple moving objects. J Neurosci. 2008 Apr 16; 28(16):4183-91.
    View in: PubMed
    Score: 0.225
  24. Selective storage and maintenance of an object's features in visual working memory. Psychon Bull Rev. 2008 Feb; 15(1):223-9.
    View in: PubMed
    Score: 0.221
  25. The time course of consolidation in visual working memory. J Exp Psychol Hum Percept Perform. 2006 Dec; 32(6):1436-51.
    View in: PubMed
    Score: 0.204
  26. Pushing around the locus of selection: evidence for the flexible-selection hypothesis. J Cogn Neurosci. 2005 Dec; 17(12):1907-22.
    View in: PubMed
    Score: 0.191
  27. Fractionating working memory: consolidation and maintenance are independent processes. Psychol Sci. 2005 Feb; 16(2):106-13.
    View in: PubMed
    Score: 0.180
  28. Delayed working memory consolidation during the attentional blink. Psychon Bull Rev. 2002 Dec; 9(4):739-43.
    View in: PubMed
    Score: 0.155
  29. Storage in Visual Working Memory Recruits a Content-Independent Pointer System. Psychol Sci. 2022 10; 33(10):1680-1694.
    View in: PubMed
    Score: 0.152
  30. The visual arrays task: Visual storage capacity or attention control? J Exp Psychol Gen. 2021 Dec; 150(12):2525-2551.
    View in: PubMed
    Score: 0.143
  31. Sustained Attention and Spatial Attention Distinctly Influence Long-term Memory Encoding. J Cogn Neurosci. 2021 09 01; 33(10):2132-2148.
    View in: PubMed
    Score: 0.142
  32. Controlling the Flow of Distracting Information in Working Memory. Cereb Cortex. 2021 06 10; 31(7):3323-3337.
    View in: PubMed
    Score: 0.140
  33. Perceptual Grouping Reveals Distinct Roles for Sustained Slow Wave Activity and Alpha Oscillations in Working Memory. J Cogn Neurosci. 2021 06 01; 33(7):1354-1364.
    View in: PubMed
    Score: 0.139
  34. Perturbing Neural Representations of Working Memory with Task-irrelevant Interruption. J Cogn Neurosci. 2020 03; 32(3):558-569.
    View in: PubMed
    Score: 0.125
  35. Item-specific delay activity demonstrates concurrent storage of multiple active neural representations in working memory. PLoS Biol. 2019 04; 17(4):e3000239.
    View in: PubMed
    Score: 0.121
  36. Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. J Exp Psychol Hum Percept Perform. 1998 Dec; 24(6):1656-74.
    View in: PubMed
    Score: 0.117
  37. Alpha-Band Oscillations Enable Spatially and Temporally Resolved Tracking of Covert Spatial Attention. Psychol Sci. 2017 Jul; 28(7):929-941.
    View in: PubMed
    Score: 0.106
  38. Working memory delay activity predicts individual differences in cognitive abilities. J Cogn Neurosci. 2015 May; 27(5):853-65.
    View in: PubMed
    Score: 0.089
  39. Electrophysiological evidence for failures of item individuation in crowded visual displays. J Cogn Neurosci. 2014 10; 26(10):2298-309.
    View in: PubMed
    Score: 0.085
  40. Evidence for a fixed capacity limit in attending multiple locations. Cogn Affect Behav Neurosci. 2014 Mar; 14(1):62-77.
    View in: PubMed
    Score: 0.084
  41. A common discrete resource for visual working memory and visual search. Psychol Sci. 2013 Jun; 24(6):929-38.
    View in: PubMed
    Score: 0.079
  42. Impaired contingent attentional capture predicts reduced working memory capacity in schizophrenia. PLoS One. 2012; 7(11):e48586.
    View in: PubMed
    Score: 0.077
  43. Statistical learning induces discrete shifts in the allocation of working memory resources. J Exp Psychol Hum Percept Perform. 2010 Dec; 36(6):1419-29.
    View in: PubMed
    Score: 0.067
  44. Perceptual expertise enhances the resolution but not the number of representations in working memory. Psychon Bull Rev. 2008 Feb; 15(1):215-22.
    View in: PubMed
    Score: 0.055
  45. Electrophysiological measures of maintaining representations in visual working memory. Cortex. 2007 Jan; 43(1):77-94.
    View in: PubMed
    Score: 0.051
  46. Event-related potential measures of visual working memory. Clin EEG Neurosci. 2006 Oct; 37(4):286-91.
    View in: PubMed
    Score: 0.050
  47. Interactions between attention and working memory. Neuroscience. 2006 Apr 28; 139(1):201-8.
    View in: PubMed
    Score: 0.048
  48. Voluntazy and automatic attentional control of visual working memory. Percept Psychophys. 2002 Jul; 64(5):754-63.
    View in: PubMed
    Score: 0.038
  49. Visual search remains efficient when visual working memory is full. Psychol Sci. 2001 May; 12(3):219-24.
    View in: PubMed
    Score: 0.035
  50. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos Trans R Soc Lond B Biol Sci. 1998 Aug 29; 353(1373):1257-70.
    View in: PubMed
    Score: 0.029
  51. Clear evidence for item limits in visual working memory. Cogn Psychol. 2017 09; 97:79-97.
    View in: PubMed
    Score: 0.027
  52. Word meanings can be accessed but not reported during the attentional blink. Nature. 1996 Oct 17; 383(6601):616-8.
    View in: PubMed
    Score: 0.025
  53. Precision in visual working memory reaches a stable plateau when individual item limits are exceeded. J Neurosci. 2011 Jan 19; 31(3):1128-38.
    View in: PubMed
    Score: 0.017
  54. Dynamic neuroplasticity after human prefrontal cortex damage. Neuron. 2010 Nov 04; 68(3):401-8.
    View in: PubMed
    Score: 0.017
  55. The comparison of visual working memory representations with perceptual inputs. J Exp Psychol Hum Percept Perform. 2009 Aug; 35(4):1140-60.
    View in: PubMed
    Score: 0.015
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.