The University of Chicago Header Logo

Connection

Edward Vogel to Memory, Short-Term

This is a "connection" page, showing publications Edward Vogel has written about Memory, Short-Term.
Connection Strength

19.594
  1. Working memory needs pointers. Trends Cogn Sci. 2025 Mar; 29(3):230-241.
    View in: PubMed
    Score: 0.751
  2. Task Termination Triggers Spontaneous Removal of Information From Visual Working Memory. Psychol Sci. 2024 Sep; 35(9):995-1009.
    View in: PubMed
    Score: 0.723
  3. Behavioral signatures of the rapid recruitment of long-term memory to overcome working memory capacity limits. Mem Cognit. 2024 11; 52(8):1816-1832.
    View in: PubMed
    Score: 0.718
  4. Sequential encoding paradigm reliably captures the individual differences from a simultaneous visual working memory task. Atten Percept Psychophys. 2023 Feb; 85(2):366-376.
    View in: PubMed
    Score: 0.654
  5. Pupillometry signatures of sustained attention and working memory. Atten Percept Psychophys. 2022 Nov; 84(8):2472-2482.
    View in: PubMed
    Score: 0.640
  6. Attention fluctuations impact ongoing maintenance of information in working memory. Psychon Bull Rev. 2020 Dec; 27(6):1269-1278.
    View in: PubMed
    Score: 0.565
  7. No Evidence for an Object Working Memory Capacity Benefit with Extended Viewing Time. eNeuro. 2020 Sep/Oct; 7(5).
    View in: PubMed
    Score: 0.558
  8. Visual short-term memory capacity predicts the "bandwidth" of visual long-term memory encoding. Mem Cognit. 2019 11; 47(8):1481-1497.
    View in: PubMed
    Score: 0.524
  9. Real-time triggering reveals concurrent lapses of attention and working memory. Nat Hum Behav. 2019 08; 3(8):808-816.
    View in: PubMed
    Score: 0.508
  10. Dissecting the Neural Focus of Attention Reveals Distinct Processes for Spatial Attention and Object-Based Storage in Visual Working Memory. Psychol Sci. 2019 04; 30(4):526-540.
    View in: PubMed
    Score: 0.500
  11. Neural Evidence for the Contribution of Active Suppression During Working Memory Filtering. Cereb Cortex. 2019 02 01; 29(2):529-543.
    View in: PubMed
    Score: 0.498
  12. Improvements to visual working memory performance with practice and feedback. PLoS One. 2018; 13(8):e0203279.
    View in: PubMed
    Score: 0.483
  13. Phase-coding memories in mind. PLoS Biol. 2018 08; 16(8):e3000012.
    View in: PubMed
    Score: 0.483
  14. Contralateral Delay Activity Indexes Working Memory Storage, Not the Current Focus of Spatial Attention. J Cogn Neurosci. 2018 08; 30(8):1185-1196.
    View in: PubMed
    Score: 0.472
  15. The reliability and stability of visual working memory capacity. Behav Res Methods. 2018 04; 50(2):576-588.
    View in: PubMed
    Score: 0.470
  16. Contralateral Delay Activity Tracks Fluctuations in Working Memory Performance. J Cogn Neurosci. 2018 09; 30(9):1229-1240.
    View in: PubMed
    Score: 0.462
  17. Confident failures: Lapses of working memory reveal a metacognitive blind spot. Atten Percept Psychophys. 2017 Jul; 79(5):1506-1523.
    View in: PubMed
    Score: 0.446
  18. Reducing failures of working memory with performance feedback. Psychon Bull Rev. 2016 10; 23(5):1520-1527.
    View in: PubMed
    Score: 0.423
  19. Tuning in by tuning out distractions. Proc Natl Acad Sci U S A. 2016 Mar 29; 113(13):3422-3.
    View in: PubMed
    Score: 0.408
  20. The contralateral delay activity as a neural measure of visual working memory. Neurosci Biobehav Rev. 2016 Mar; 62:100-8.
    View in: PubMed
    Score: 0.403
  21. a Power Modulation and Event-Related Slow Wave Provide Dissociable Correlates of Visual Working Memory. J Neurosci. 2015 Oct 14; 35(41):14009-16.
    View in: PubMed
    Score: 0.396
  22. Neurocognitive Architecture of Working Memory. Neuron. 2015 Oct 07; 88(1):33-46.
    View in: PubMed
    Score: 0.395
  23. The contribution of attentional lapses to individual differences in visual working memory capacity. J Cogn Neurosci. 2015 Aug; 27(8):1601-16.
    View in: PubMed
    Score: 0.381
  24. Working memory delay activity predicts individual differences in cognitive abilities. J Cogn Neurosci. 2015 May; 27(5):853-65.
    View in: PubMed
    Score: 0.373
  25. Come together, right now: dynamic overwriting of an object's history through common fate. J Cogn Neurosci. 2014 Aug; 26(8):1819-28.
    View in: PubMed
    Score: 0.353
  26. Working memory and fluid intelligence: capacity, attention control, and secondary memory retrieval. Cogn Psychol. 2014 Jun; 71:1-26.
    View in: PubMed
    Score: 0.353
  27. Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends Cogn Sci. 2013 Aug; 17(8):391-400.
    View in: PubMed
    Score: 0.339
  28. Neural limits to representing objects still within view. J Neurosci. 2013 May 08; 33(19):8257-63.
    View in: PubMed
    Score: 0.334
  29. Visual search demands dictate reliance on working memory storage. J Neurosci. 2011 Apr 20; 31(16):6199-207.
    View in: PubMed
    Score: 0.290
  30. Individual differences in recovery time from attentional capture. Psychol Sci. 2011 Mar; 22(3):361-8.
    View in: PubMed
    Score: 0.286
  31. Delineating the neural signatures of tracking spatial position and working memory during attentive tracking. J Neurosci. 2011 Jan 12; 31(2):659-68.
    View in: PubMed
    Score: 0.285
  32. Shape and color conjunction stimuli are represented as bound objects in visual working memory. Neuropsychologia. 2011 May; 49(6):1632-9.
    View in: PubMed
    Score: 0.283
  33. Discrete capacity limits in visual working memory. Curr Opin Neurobiol. 2010 Apr; 20(2):177-82.
    View in: PubMed
    Score: 0.270
  34. Selective storage and maintenance of an object's features in visual working memory. Psychon Bull Rev. 2008 Feb; 15(1):223-9.
    View in: PubMed
    Score: 0.232
  35. The bouncer in the brain. Nat Neurosci. 2008 Jan; 11(1):5-6.
    View in: PubMed
    Score: 0.231
  36. Visual working memory represents a fixed number of items regardless of complexity. Psychol Sci. 2007 Jul; 18(7):622-8.
    View in: PubMed
    Score: 0.223
  37. Electrophysiological measures of maintaining representations in visual working memory. Cortex. 2007 Jan; 43(1):77-94.
    View in: PubMed
    Score: 0.215
  38. Event-related potential measures of visual working memory. Clin EEG Neurosci. 2006 Oct; 37(4):286-91.
    View in: PubMed
    Score: 0.212
  39. Fractionating working memory: consolidation and maintenance are independent processes. Psychol Sci. 2005 Feb; 16(2):106-13.
    View in: PubMed
    Score: 0.189
  40. Delayed working memory consolidation during the attentional blink. Psychon Bull Rev. 2002 Dec; 9(4):739-43.
    View in: PubMed
    Score: 0.162
  41. Change localization: A highly reliable and sensitive measure of capacity in visual working memory. Atten Percept Psychophys. 2023 Jul; 85(5):1681-1694.
    View in: PubMed
    Score: 0.161
  42. Storage in Visual Working Memory Recruits a Content-Independent Pointer System. Psychol Sci. 2022 10; 33(10):1680-1694.
    View in: PubMed
    Score: 0.159
  43. The visual arrays task: Visual storage capacity or attention control? J Exp Psychol Gen. 2021 Dec; 150(12):2525-2551.
    View in: PubMed
    Score: 0.150
  44. Controlling the Flow of Distracting Information in Working Memory. Cereb Cortex. 2021 06 10; 31(7):3323-3337.
    View in: PubMed
    Score: 0.146
  45. Perceptual Grouping Reveals Distinct Roles for Sustained Slow Wave Activity and Alpha Oscillations in Working Memory. J Cogn Neurosci. 2021 06 01; 33(7):1354-1364.
    View in: PubMed
    Score: 0.146
  46. Estimating the statistical power to detect set-size effects in contralateral delay activity. Psychophysiology. 2021 05; 58(5):e13791.
    View in: PubMed
    Score: 0.143
  47. Multivariate analysis reveals a generalizable human electrophysiological signature of working memory load. Psychophysiology. 2020 12; 57(12):e13691.
    View in: PubMed
    Score: 0.140
  48. Distinguishing cognitive effort and working memory load using scale-invariance and alpha suppression in EEG. Neuroimage. 2020 05 01; 211:116622.
    View in: PubMed
    Score: 0.134
  49. Perturbing Neural Representations of Working Memory with Task-irrelevant Interruption. J Cogn Neurosci. 2020 03; 32(3):558-569.
    View in: PubMed
    Score: 0.131
  50. Item-specific delay activity demonstrates concurrent storage of multiple active neural representations in working memory. PLoS Biol. 2019 04; 17(4):e3000239.
    View in: PubMed
    Score: 0.126
  51. The capacity of visual working memory for features and conjunctions. Nature. 1997 Nov 20; 390(6657):279-81.
    View in: PubMed
    Score: 0.115
  52. Clear evidence for item limits in visual working memory. Cogn Psychol. 2017 09; 97:79-97.
    View in: PubMed
    Score: 0.112
  53. Induced a rhythms track the content and quality of visual working memory representations with high temporal precision. J Neurosci. 2014 May 28; 34(22):7587-99.
    View in: PubMed
    Score: 0.090
  54. Evidence for a fixed capacity limit in attending multiple locations. Cogn Affect Behav Neurosci. 2014 Mar; 14(1):62-77.
    View in: PubMed
    Score: 0.088
  55. No behavioral or ERP evidence for a developmental lag in visual working memory capacity or filtering in adolescents and adults with ADHD. PLoS One. 2013; 8(5):e62673.
    View in: PubMed
    Score: 0.083
  56. A common discrete resource for visual working memory and visual search. Psychol Sci. 2013 Jun; 24(6):929-38.
    View in: PubMed
    Score: 0.083
  57. Impaired contingent attentional capture predicts reduced working memory capacity in schizophrenia. PLoS One. 2012; 7(11):e48586.
    View in: PubMed
    Score: 0.081
  58. Prolonged disengagement from attentional capture in normal aging. Psychol Aging. 2013 Mar; 28(1):77-86.
    View in: PubMed
    Score: 0.080
  59. Selection and storage of perceptual groups is constrained by a discrete resource in working memory. J Exp Psychol Hum Percept Perform. 2013 Jun; 39(3):824-835.
    View in: PubMed
    Score: 0.080
  60. Electrophysiological evidence for immature processing capacity and filtering in visuospatial working memory in adolescents. PLoS One. 2012; 7(8):e42262.
    View in: PubMed
    Score: 0.080
  61. The effects of two types of sleep deprivation on visual working memory capacity and filtering efficiency. PLoS One. 2012; 7(4):e35653.
    View in: PubMed
    Score: 0.078
  62. Precision in visual working memory reaches a stable plateau when individual item limits are exceeded. J Neurosci. 2011 Jan 19; 31(3):1128-38.
    View in: PubMed
    Score: 0.071
  63. Statistical learning induces discrete shifts in the allocation of working memory resources. J Exp Psychol Hum Percept Perform. 2010 Dec; 36(6):1419-29.
    View in: PubMed
    Score: 0.071
  64. Are old adults just like low working memory young adults? Filtering efficiency and age differences in visual working memory. Cereb Cortex. 2011 May; 21(5):1147-54.
    View in: PubMed
    Score: 0.070
  65. Visual working memory deficits in patients with Parkinson's disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain. 2010 Sep; 133(9):2677-89.
    View in: PubMed
    Score: 0.069
  66. Perceptual expertise enhances the resolution but not the number of representations in working memory. Psychon Bull Rev. 2008 Feb; 15(1):215-22.
    View in: PubMed
    Score: 0.058
  67. The time course of consolidation in visual working memory. J Exp Psychol Hum Percept Perform. 2006 Dec; 32(6):1436-51.
    View in: PubMed
    Score: 0.054
  68. Interactions between attention and working memory. Neuroscience. 2006 Apr 28; 139(1):201-8.
    View in: PubMed
    Score: 0.050
  69. Pushing around the locus of selection: evidence for the flexible-selection hypothesis. J Cogn Neurosci. 2005 Dec; 17(12):1907-22.
    View in: PubMed
    Score: 0.050
  70. Inter-electrode correlations measured with EEG predict individual differences in cognitive ability. Curr Biol. 2021 11 22; 31(22):4998-5008.e6.
    View in: PubMed
    Score: 0.037
  71. Sustained Attention and Spatial Attention Distinctly Influence Long-term Memory Encoding. J Cogn Neurosci. 2021 09 01; 33(10):2132-2148.
    View in: PubMed
    Score: 0.037
  72. Visual search remains efficient when visual working memory is full. Psychol Sci. 2001 May; 12(3):219-24.
    View in: PubMed
    Score: 0.036
  73. ?9-Tetrahydrocannabinol (THC) impairs visual working memory performance: a randomized crossover trial. Neuropsychopharmacology. 2020 10; 45(11):1807-1816.
    View in: PubMed
    Score: 0.034
  74. Dynamic neuroplasticity after human prefrontal cortex damage. Neuron. 2010 Nov 04; 68(3):401-8.
    View in: PubMed
    Score: 0.018
  75. The comparison of visual working memory representations with perceptual inputs. J Exp Psychol Hum Percept Perform. 2009 Aug; 35(4):1140-60.
    View in: PubMed
    Score: 0.016
  76. Stimulus-specific delay activity in human primary visual cortex. Psychol Sci. 2009 Feb; 20(2):207-14.
    View in: PubMed
    Score: 0.015
  77. Lower region: a new cue for figure-ground assignment. J Exp Psychol Gen. 2002 Jun; 131(2):194-205.
    View in: PubMed
    Score: 0.010
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.