The University of Chicago Header Logo

Connection

Romuald Girard to Humans

This is a "connection" page, showing publications Romuald Girard has written about Humans.
Connection Strength

0.398
  1. A Roadmap for Developing Plasma Diagnostic and Prognostic Biomarkers of Cerebral Cavernous Angioma With Symptomatic Hemorrhage (CASH). Neurosurgery. 2021 02 16; 88(3):686-697.
    View in: PubMed
    Score: 0.025
  2. A comprehensive p75 neurotrophin receptor gene network and pathway analyses identifying new target genes. Sci Rep. 2020 09 11; 10(1):14984.
    View in: PubMed
    Score: 0.024
  3. Biomarkers of cavernous angioma with symptomatic hemorrhage. JCI Insight. 2019 06 20; 4(12).
    View in: PubMed
    Score: 0.022
  4. Plasma Biomarkers of Inflammation and Angiogenesis Predict Cerebral Cavernous Malformation Symptomatic Hemorrhage or Lesional Growth. Circ Res. 2018 06 08; 122(12):1716-1721.
    View in: PubMed
    Score: 0.020
  5. Plasma Biomarkers of Inflammation Reflect Seizures and Hemorrhagic Activity of Cerebral Cavernous Malformations. Transl Stroke Res. 2018 02; 9(1):34-43.
    View in: PubMed
    Score: 0.019
  6. Vascular permeability and iron deposition biomarkers in longitudinal follow-up of cerebral cavernous malformations. J Neurosurg. 2017 Jul; 127(1):102-110.
    View in: PubMed
    Score: 0.018
  7. Peripheral plasma vitamin D and non-HDL cholesterol reflect the severity of cerebral cavernous malformation disease. Biomark Med. 2016; 10(3):255-64.
    View in: PubMed
    Score: 0.017
  8. Epigenetic regulation by polycomb repressive complex 1 promotes cerebral cavernous malformations. EMBO Mol Med. 2024 Nov; 16(11):2827-2855.
    View in: PubMed
    Score: 0.008
  9. Brain plasticity and neuroinflammatory protein biomarkers with circulating MicroRNAs as predictors of acute brain injury outcome - A prospective cohort study. J Neurol Sci. 2024 Sep 15; 464:123169.
    View in: PubMed
    Score: 0.008
  10. Mild Hypoxia Accelerates Cerebral Cavernous Malformation Disease Through CX3CR1-CX3CL1 Signaling. Arterioscler Thromb Vasc Biol. 2024 06; 44(6):1246-1264.
    View in: PubMed
    Score: 0.008
  11. Pathologic features of brain hemorrhage after radiation treatment: case series with somatic mutation analysis. J Stroke Cerebrovasc Dis. 2024 Jul; 33(7):107699.
    View in: PubMed
    Score: 0.008
  12. Transcriptomic signatures of individual cell types in cerebral cavernous malformation. Cell Commun Signal. 2024 01 09; 22(1):23.
    View in: PubMed
    Score: 0.008
  13. Trial Readiness of Cavernous Malformations With Symptomatic Hemorrhage, Part II: Biomarkers and Trial Modeling. Stroke. 2024 01; 55(1):31-39.
    View in: PubMed
    Score: 0.008
  14. Trial Readiness of Cavernous Malformations With Symptomatic Hemorrhage, Part I: Event Rates and Clinical Outcome. Stroke. 2024 01; 55(1):22-30.
    View in: PubMed
    Score: 0.008
  15. Single-nucleus DNA sequencing reveals hidden somatic loss-of-heterozygosity in Cerebral Cavernous Malformations. Nat Commun. 2023 11 02; 14(1):7009.
    View in: PubMed
    Score: 0.007
  16. Impact of socioeconomics and race on clinical follow-up and trial enrollment and adherence in cerebral cavernous malformation. J Stroke Cerebrovasc Dis. 2023 Jul; 32(7):107167.
    View in: PubMed
    Score: 0.007
  17. Editorial for "The Consistence of Dynamic-Contrast-Enhanced MRI and Filter-Exchange Imaging in Measuring Water Exchange Across the Blood-Brain Barrier in High-Grade Glioma". J Magn Reson Imaging. 2023 12; 58(6):1861-1862.
    View in: PubMed
    Score: 0.007
  18. Circulating Plasma miRNA Homologs in Mice and Humans Reflect Familial Cerebral Cavernous Malformation Disease. Transl Stroke Res. 2023 08; 14(4):513-529.
    View in: PubMed
    Score: 0.007
  19. Cerebral Hemorrhage: Pathophysiology, Treatment, and Future Directions. Circ Res. 2022 04 15; 130(8):1204-1229.
    View in: PubMed
    Score: 0.007
  20. Propranolol as therapy for cerebral cavernous malformations: a cautionary note. J Transl Med. 2022 04 05; 20(1):160.
    View in: PubMed
    Score: 0.007
  21. Perfusion and Permeability MRI Predicts Future Cavernous Angioma Hemorrhage and Growth. J Magn Reson Imaging. 2022 05; 55(5):1440-1449.
    View in: PubMed
    Score: 0.006
  22. COVID-19 in a Hemorrhagic Neurovascular Disease, Cerebral Cavernous Malformation. J Stroke Cerebrovasc Dis. 2021 Nov; 30(11):106101.
    View in: PubMed
    Score: 0.006
  23. Astrocytes propel neurovascular dysfunction during cerebral cavernous malformation lesion formation. J Clin Invest. 2021 07 01; 131(13).
    View in: PubMed
    Score: 0.006
  24. Cerebral Cavernous Malformation: From Mechanism to Therapy. Circ Res. 2021 06 25; 129(1):195-215.
    View in: PubMed
    Score: 0.006
  25. Perfusion and permeability as diagnostic biomarkers of cavernous angioma with symptomatic hemorrhage. J Cereb Blood Flow Metab. 2021 11; 41(11):2944-2956.
    View in: PubMed
    Score: 0.006
  26. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature. 2021 06; 594(7862):271-276.
    View in: PubMed
    Score: 0.006
  27. Intracerebral Hemorrhage Volume Reduction and Timing of Intervention Versus Functional Benefit and Survival in the MISTIE III and STICH Trials. Neurosurgery. 2021 04 15; 88(5):961-970.
    View in: PubMed
    Score: 0.006
  28. Common transcriptome, plasma molecules, and imaging signatures in the aging brain and a Mendelian neurovascular disease, cerebral cavernous malformation. Geroscience. 2020 10; 42(5):1351-1363.
    View in: PubMed
    Score: 0.006
  29. Permissive microbiome characterizes human subjects with a neurovascular disease cavernous angioma. Nat Commun. 2020 05 27; 11(1):2659.
    View in: PubMed
    Score: 0.006
  30. Antibodies in cerebral cavernous malformations react with cytoskeleton autoantigens in the lesional milieu. J Autoimmun. 2020 09; 113:102469.
    View in: PubMed
    Score: 0.006
  31. Subclinical imaging changes in cerebral cavernous angiomas during prospective surveillance. J Neurosurg. 2021 03 01; 134(3):1147-1154.
    View in: PubMed
    Score: 0.006
  32. Editorial for "Ensemble Learning for Early-Response Prediction of Antidepressant Treatment in Major Depressive Disorder". J Magn Reson Imaging. 2020 07; 52(1):172-173.
    View in: PubMed
    Score: 0.006
  33. Symptomatic Brain Hemorrhages from Cavernous Angioma After Botulinum Toxin Injections, a Role of TLR/MEKK3 Mechanism? Case Report and Review of the Literature. World Neurosurg. 2020 Apr; 136:7-11.
    View in: PubMed
    Score: 0.006
  34. Atorvastatin Treatment of Cavernous Angiomas with Symptomatic Hemorrhage Exploratory Proof of Concept (AT CASH EPOC) Trial. Neurosurgery. 2019 12 01; 85(6):843-853.
    View in: PubMed
    Score: 0.006
  35. Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation. Sci Transl Med. 2019 11 27; 11(520).
    View in: PubMed
    Score: 0.006
  36. Surgical Performance Determines Functional Outcome Benefit in the Minimally Invasive Surgery Plus Recombinant Tissue Plasminogen Activator for Intracerebral Hemorrhage Evacuation (MISTIE) Procedure. Neurosurgery. 2019 06 01; 84(6):1157-1168.
    View in: PubMed
    Score: 0.005
  37. A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis. Nat Commun. 2019 04 17; 10(1):1791.
    View in: PubMed
    Score: 0.005
  38. Trial Readiness in Cavernous Angiomas With Symptomatic Hemorrhage (CASH). Neurosurgery. 2019 04 01; 84(4):954-964.
    View in: PubMed
    Score: 0.005
  39. Symptomatic Hemorrhagic Complications in Clot Lysis: Evaluation of Accelerated Resolution of Intraventricular Hemorrhage Phase III Clinical Trial (CLEAR III): A Posthoc Root-Cause Analysis. Neurosurgery. 2018 12 01; 83(6):1260-1268.
    View in: PubMed
    Score: 0.005
  40. Cerebral cavernous malformations form an anticoagulant vascular domain in humans and mice. Blood. 2019 01 17; 133(3):193-204.
    View in: PubMed
    Score: 0.005
  41. Phenotypic characterization of murine models of cerebral cavernous malformations. Lab Invest. 2019 03; 99(3):319-330.
    View in: PubMed
    Score: 0.005
  42. Surgical Performance in Minimally Invasive Surgery Plus Recombinant Tissue Plasminogen Activator for Intracerebral Hemorrhage Evacuation Phase III Clinical Trial. Neurosurgery. 2017 Nov 01; 81(5):860-866.
    View in: PubMed
    Score: 0.005
  43. Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations. J Exp Med. 2017 Nov 06; 214(11):3331-3346.
    View in: PubMed
    Score: 0.005
  44. Quantitative susceptibility mapping as a monitoring biomarker in cerebral cavernous malformations with recent hemorrhage. J Magn Reson Imaging. 2018 04; 47(4):1133-1138.
    View in: PubMed
    Score: 0.005
  45. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017 05 18; 545(7654):305-310.
    View in: PubMed
    Score: 0.005
  46. Social brains and divides: the interplay between social dominance orientation and the neural sensitivity to hierarchical ranks. Sci Rep. 2017 04 05; 7:45920.
    View in: PubMed
    Score: 0.005
  47. Quantitative Susceptibility Mapping in Cerebral Cavernous Malformations: Clinical Correlations. AJNR Am J Neuroradiol. 2016 Jul; 37(7):1209-15.
    View in: PubMed
    Score: 0.004
  48. Vascular permeability in cerebral cavernous malformations. J Cereb Blood Flow Metab. 2015 Oct; 35(10):1632-9.
    View in: PubMed
    Score: 0.004
  49. A study of the practice of otorhinolaryngology in the United States. Initial findings. Arch Otolaryngol. 1979 Oct; 105(10):610-20.
    View in: PubMed
    Score: 0.001
  50. A study of the practice of dermatology in the United States. Initial findings. Arch Dermatol. 1978 Oct; 114(10):1456-62.
    View in: PubMed
    Score: 0.000
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.