The University of Chicago Header Logo

Connection

Romuald Girard to Mice

This is a "connection" page, showing publications Romuald Girard has written about Mice.
Connection Strength

0.316
  1. Micro-computed tomography in murine models of cerebral cavernous malformations as a paradigm for brain disease. J Neurosci Methods. 2016 09 15; 271:14-24.
    View in: PubMed
    Score: 0.051
  2. Epigenetic regulation by polycomb repressive complex 1 promotes cerebral cavernous malformations. EMBO Mol Med. 2024 Nov; 16(11):2827-2855.
    View in: PubMed
    Score: 0.023
  3. Mild Hypoxia Accelerates Cerebral Cavernous Malformation Disease Through CX3CR1-CX3CL1 Signaling. Arterioscler Thromb Vasc Biol. 2024 06; 44(6):1246-1264.
    View in: PubMed
    Score: 0.022
  4. Circulating Plasma miRNA Homologs in Mice and Humans Reflect Familial Cerebral Cavernous Malformation Disease. Transl Stroke Res. 2023 08; 14(4):513-529.
    View in: PubMed
    Score: 0.019
  5. Astrocytes propel neurovascular dysfunction during cerebral cavernous malformation lesion formation. J Clin Invest. 2021 07 01; 131(13).
    View in: PubMed
    Score: 0.018
  6. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature. 2021 06; 594(7862):271-276.
    View in: PubMed
    Score: 0.018
  7. Propranolol inhibits cavernous vascular malformations by ß1 adrenergic receptor antagonism in animal models. J Clin Invest. 2021 02 01; 131(3).
    View in: PubMed
    Score: 0.017
  8. Cerebral cavernous malformations are driven by ADAMTS5 proteolysis of versican. J Exp Med. 2020 10 05; 217(10).
    View in: PubMed
    Score: 0.017
  9. Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation. Sci Transl Med. 2019 11 27; 11(520).
    View in: PubMed
    Score: 0.016
  10. Transcriptome clarifies mechanisms of lesion genesis versus progression in models of Ccm3 cerebral cavernous malformations. Acta Neuropathol Commun. 2019 08 19; 7(1):132.
    View in: PubMed
    Score: 0.016
  11. A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis. Nat Commun. 2019 04 17; 10(1):1791.
    View in: PubMed
    Score: 0.015
  12. Rho Kinase Inhibition Blunts Lesion Development and Hemorrhage in Murine Models of Aggressive Pdcd10/Ccm3 Disease. Stroke. 2019 03; 50(3):738-744.
    View in: PubMed
    Score: 0.015
  13. Cerebral cavernous malformations form an anticoagulant vascular domain in humans and mice. Blood. 2019 01 17; 133(3):193-204.
    View in: PubMed
    Score: 0.015
  14. Phenotypic characterization of murine models of cerebral cavernous malformations. Lab Invest. 2019 03; 99(3):319-330.
    View in: PubMed
    Score: 0.015
  15. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017 05 18; 545(7654):305-310.
    View in: PubMed
    Score: 0.013
  16. RhoA Kinase Inhibition With Fasudil Versus Simvastatin in Murine Models of Cerebral Cavernous Malformations. Stroke. 2017 01; 48(1):187-194.
    View in: PubMed
    Score: 0.013
  17. B-Cell Depletion Reduces the Maturation of Cerebral Cavernous Malformations in Murine Models. J Neuroimmune Pharmacol. 2016 06; 11(2):369-77.
    View in: PubMed
    Score: 0.013
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.