The University of Chicago Header Logo

Connection

John H.R. Maunsell to Animals

This is a "connection" page, showing publications John H.R. Maunsell has written about Animals.
Connection Strength

1.939
  1. Rodent attention: Probing the mouse mind with reverse correlation. Curr Biol. 2023 09 11; 33(17):R916-R918.
    View in: PubMed
    Score: 0.060
  2. Increments in visual motion coherence are more readily detected than decrements. J Vis. 2023 05 02; 23(5):18.
    View in: PubMed
    Score: 0.058
  3. Neuronal correlates of selective attention and effort in visual area V4 are invariant of motivational context. Sci Adv. 2022 06 10; 8(23):eabc8812.
    View in: PubMed
    Score: 0.055
  4. Perceptual Weighting of V1 Spikes Revealed by Optogenetic White Noise Stimulation. J Neurosci. 2022 04 13; 42(15):3122-3132.
    View in: PubMed
    Score: 0.054
  5. Single trial neuronal activity dynamics of attentional intensity in monkey visual area V4. Nat Commun. 2021 03 31; 12(1):2003.
    View in: PubMed
    Score: 0.050
  6. Mice Preferentially Use Increases in Cerebral Cortex Spiking to Detect Changes in Visual Stimuli. J Neurosci. 2020 10 07; 40(41):7902-7920.
    View in: PubMed
    Score: 0.048
  7. The Correlation of Neuronal Signals with Behavior at Different Levels of Visual Cortex and Their Relative Reliability for Behavioral Decisions. J Neurosci. 2020 05 06; 40(19):3751-3767.
    View in: PubMed
    Score: 0.047
  8. Neuronal Effects of Spatial and Feature Attention Differ Due to Normalization. J Neurosci. 2019 07 10; 39(28):5493-5505.
    View in: PubMed
    Score: 0.044
  9. Different Inhibitory Interneuron Cell Classes Make Distinct Contributions to Visual Contrast Perception. eNeuro. 2019 Jan-Feb; 6(1).
    View in: PubMed
    Score: 0.044
  10. Electrical Microstimulation of Visual Cerebral Cortex Elevates Psychophysical Detection Thresholds. eNeuro. 2018 Sep-Oct; 5(5).
    View in: PubMed
    Score: 0.043
  11. Attentional Changes in Either Criterion or Sensitivity Are Associated with Robust Modulations in Lateral Prefrontal Cortex. Neuron. 2018 03 21; 97(6):1382-1393.e7.
    View in: PubMed
    Score: 0.041
  12. Spatially tuned normalization explains attention modulation variance within neurons. J Neurophysiol. 2017 09 01; 118(3):1903-1913.
    View in: PubMed
    Score: 0.039
  13. Attention-related changes in correlated neuronal activity arise from normalization mechanisms. Nat Neurosci. 2017 Jul; 20(7):969-977.
    View in: PubMed
    Score: 0.039
  14. Attention operates uniformly throughout the classical receptive field and the surround. Elife. 2016 08 22; 5.
    View in: PubMed
    Score: 0.037
  15. Graded Neuronal Modulations Related to Visual Spatial Attention. J Neurosci. 2016 05 11; 36(19):5353-61.
    View in: PubMed
    Score: 0.036
  16. A Refined Neuronal Population Measure of Visual Attention. PLoS One. 2015; 10(8):e0136570.
    View in: PubMed
    Score: 0.034
  17. Neuronal Modulations in Visual Cortex Are Associated with Only One of Multiple Components of Attention. Neuron. 2015 Jun 03; 86(5):1182-8.
    View in: PubMed
    Score: 0.034
  18. Do gamma oscillations play a role in cerebral cortex? Trends Cogn Sci. 2015 Feb; 19(2):78-85.
    View in: PubMed
    Score: 0.033
  19. Cortical neural populations can guide behavior by integrating inputs linearly, independent of synchrony. Proc Natl Acad Sci U S A. 2014 Jan 07; 111(1):E178-87.
    View in: PubMed
    Score: 0.030
  20. Mouse primary visual cortex is used to detect both orientation and contrast changes. J Neurosci. 2013 Dec 11; 33(50):19416-22.
    View in: PubMed
    Score: 0.030
  21. Strength of gamma rhythm depends on normalization. PLoS Biol. 2013; 11(2):e1001477.
    View in: PubMed
    Score: 0.029
  22. A strong constraint to the joint processing of pairs of cortical signals. J Neurosci. 2012 Nov 07; 32(45):15922-33.
    View in: PubMed
    Score: 0.028
  23. Potential confounds in estimating trial-to-trial correlations between neuronal response and behavior using choice probabilities. J Neurophysiol. 2012 Dec; 108(12):3403-15.
    View in: PubMed
    Score: 0.028
  24. Tuned normalization explains the size of attention modulations. Neuron. 2012 Feb 23; 73(4):803-13.
    View in: PubMed
    Score: 0.027
  25. Insights into cortical mechanisms of behavior from microstimulation experiments. Prog Neurobiol. 2013 Apr; 103:115-30.
    View in: PubMed
    Score: 0.027
  26. Psychophysical measurement of contrast sensitivity in the behaving mouse. J Neurophysiol. 2012 Feb; 107(3):758-65.
    View in: PubMed
    Score: 0.026
  27. When attention wanders: how uncontrolled fluctuations in attention affect performance. J Neurosci. 2011 Nov 02; 31(44):15802-6.
    View in: PubMed
    Score: 0.026
  28. Network rhythms influence the relationship between spike-triggered local field potential and functional connectivity. J Neurosci. 2011 Aug 31; 31(35):12674-82.
    View in: PubMed
    Score: 0.026
  29. Using neuronal populations to study the mechanisms underlying spatial and feature attention. Neuron. 2011 Jun 23; 70(6):1192-204.
    View in: PubMed
    Score: 0.026
  30. Effects of stimulus direction on the correlation between behavior and single units in area MT during a motion detection task. J Neurosci. 2011 Jun 01; 31(22):8230-8.
    View in: PubMed
    Score: 0.025
  31. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 2011 Apr; 9(4):e1000610.
    View in: PubMed
    Score: 0.025
  32. A neuronal population measure of attention predicts behavioral performance on individual trials. J Neurosci. 2010 Nov 10; 30(45):15241-53.
    View in: PubMed
    Score: 0.024
  33. Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron. 2010 Sep 09; 67(5):885-96.
    View in: PubMed
    Score: 0.024
  34. The effect of attention on neuronal responses to high and low contrast stimuli. J Neurophysiol. 2010 Aug; 104(2):960-71.
    View in: PubMed
    Score: 0.024
  35. Microstimulation reveals limits in detecting different signals from a local cortical region. Curr Biol. 2010 May 11; 20(9):824-8.
    View in: PubMed
    Score: 0.024
  36. Attentional modulation of MT neurons with single or multiple stimuli in their receptive fields. J Neurosci. 2010 Feb 24; 30(8):3058-66.
    View in: PubMed
    Score: 0.023
  37. Attention improves performance primarily by reducing interneuronal correlations. Nat Neurosci. 2009 Dec; 12(12):1594-600.
    View in: PubMed
    Score: 0.023
  38. The Neuroscience Peer Review Consortium. Neural Dev. 2009 Mar 12; 4:10.
    View in: PubMed
    Score: 0.022
  39. Electrical microstimulation thresholds for behavioral detection and saccades in monkey frontal eye fields. Proc Natl Acad Sci U S A. 2008 May 20; 105(20):7315-20.
    View in: PubMed
    Score: 0.021
  40. Spatial summation can explain the attentional modulation of neuronal responses to multiple stimuli in area V4. J Neurosci. 2008 May 07; 28(19):5115-26.
    View in: PubMed
    Score: 0.021
  41. Spatial attention and the latency of neuronal responses in macaque area V4. J Neurosci. 2007 Sep 05; 27(36):9632-7.
    View in: PubMed
    Score: 0.020
  42. Behavioral detection of electrical microstimulation in different cortical visual areas. Curr Biol. 2007 May 15; 17(10):862-7.
    View in: PubMed
    Score: 0.019
  43. Effects of task difficulty and target likelihood in area V4 of macaque monkeys. J Neurophysiol. 2006 Nov; 96(5):2377-87.
    View in: PubMed
    Score: 0.018
  44. Effects of spatial attention on contrast response functions in macaque area V4. J Neurophysiol. 2006 Jul; 96(1):40-54.
    View in: PubMed
    Score: 0.018
  45. Feature-based attention in visual cortex. Trends Neurosci. 2006 Jun; 29(6):317-22.
    View in: PubMed
    Score: 0.018
  46. Motion processing in macaque V4. Nat Neurosci. 2005 Sep; 8(9):1125; author reply 1125.
    View in: PubMed
    Score: 0.017
  47. Using neuronal latency to determine sensory-motor processing pathways in reaction time tasks. J Neurophysiol. 2005 May; 93(5):2974-86.
    View in: PubMed
    Score: 0.016
  48. Attentional modulation of motion integration of individual neurons in the middle temporal visual area. J Neurosci. 2004 Sep 08; 24(36):7964-77.
    View in: PubMed
    Score: 0.016
  49. Neuronal representations of cognitive state: reward or attention? Trends Cogn Sci. 2004 Jun; 8(6):261-5.
    View in: PubMed
    Score: 0.016
  50. The effect of perceptual learning on neuronal responses in monkey visual area V4. J Neurosci. 2004 Feb 18; 24(7):1617-26.
    View in: PubMed
    Score: 0.015
  51. Normalization in mouse primary visual cortex. PLoS One. 2023; 18(12):e0295140.
    View in: PubMed
    Score: 0.015
  52. Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. J Neurophysiol. 2003 Jun; 89(6):3264-78.
    View in: PubMed
    Score: 0.015
  53. Attentional modulation in visual cortex depends on task timing. Nature. 2002 Oct 10; 419(6907):616-20.
    View in: PubMed
    Score: 0.014
  54. Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat Neurosci. 2002 Oct; 5(10):985-94.
    View in: PubMed
    Score: 0.014
  55. The role of attention in visual processing. Philos Trans R Soc Lond B Biol Sci. 2002 Aug 29; 357(1424):1063-72.
    View in: PubMed
    Score: 0.014
  56. Physiological correlates of perceptual learning in monkey V1 and V2. J Neurophysiol. 2002 Apr; 87(4):1867-88.
    View in: PubMed
    Score: 0.013
  57. Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. J Neurosci. 2002 Mar 01; 22(5):1994-2004.
    View in: PubMed
    Score: 0.013
  58. An Open Resource for Non-human Primate Optogenetics. Neuron. 2020 12 23; 108(6):1075-1090.e6.
    View in: PubMed
    Score: 0.012
  59. The Mind of a Mouse. Cell. 2020 09 17; 182(6):1372-1376.
    View in: PubMed
    Score: 0.012
  60. Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing. Nat Neurosci. 2000 Aug; 3(8):814-21.
    View in: PubMed
    Score: 0.012
  61. Attention to both space and feature modulates neuronal responses in macaque area V4. J Neurophysiol. 2000 Mar; 83(3):1751-5.
    View in: PubMed
    Score: 0.012
  62. Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J Neurosci. 1999 Sep 01; 19(17):7591-602.
    View in: PubMed
    Score: 0.011
  63. Specialized representations in visual cortex: a role for binding? Neuron. 1999 Sep; 24(1):79-85, 111-25.
    View in: PubMed
    Score: 0.011
  64. Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron. 1999 Aug; 23(4):765-73.
    View in: PubMed
    Score: 0.011
  65. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J Neurosci. 1999 Jan 01; 19(1):431-41.
    View in: PubMed
    Score: 0.011
  66. Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Vis Neurosci. 1999 Jan-Feb; 16(1):1-14.
    View in: PubMed
    Score: 0.011
  67. Shape selectivity in primate lateral intraparietal cortex. Nature. 1998 Oct 01; 395(6701):500-3.
    View in: PubMed
    Score: 0.011
  68. Sensory modality specificity of neural activity related to memory in visual cortex. J Neurophysiol. 1997 Sep; 78(3):1263-75.
    View in: PubMed
    Score: 0.010
  69. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature. 1996 Aug 08; 382(6591):539-41.
    View in: PubMed
    Score: 0.009
  70. No binocular rivalry in the LGN of alert macaque monkeys. Vision Res. 1996 May; 36(9):1225-34.
    View in: PubMed
    Score: 0.009
  71. The brain's visual world: representation of visual targets in cerebral cortex. Science. 1995 Nov 03; 270(5237):764-9.
    View in: PubMed
    Score: 0.009
  72. Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature. 1995 Feb 09; 373(6514):518-21.
    View in: PubMed
    Score: 0.008
  73. Responses of neurons in the parietal and temporal visual pathways during a motion task. J Neurosci. 1994 Oct; 14(10):6171-86.
    View in: PubMed
    Score: 0.008
  74. Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex. J Neurosci. 1994 Apr; 14(4):2069-79.
    View in: PubMed
    Score: 0.008
  75. Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways. J Neurosci. 1994 Apr; 14(4):2080-8.
    View in: PubMed
    Score: 0.008
  76. Magnocellular or parvocellular lesions in the lateral geniculate nucleus of monkeys cause minor deficits of smooth pursuit eye movements. Vision Res. 1994 Jan; 34(2):223-39.
    View in: PubMed
    Score: 0.008
  77. Visual effects of lesions of cortical area V2 in macaques. J Neurosci. 1993 Jul; 13(7):3180-91.
    View in: PubMed
    Score: 0.007
  78. How parallel are the primate visual pathways? Annu Rev Neurosci. 1993; 16:369-402.
    View in: PubMed
    Score: 0.007
  79. Spatiotemporal sensitivity following lesions of area 18 in the cat. J Neurosci. 1992 Nov; 12(11):4521-9.
    View in: PubMed
    Score: 0.007
  80. Visual response latencies in striate cortex of the macaque monkey. J Neurophysiol. 1992 Oct; 68(4):1332-44.
    View in: PubMed
    Score: 0.007
  81. Mixed parvocellular and magnocellular geniculate signals in visual area V4. Nature. 1992 Aug 27; 358(6389):756-61.
    View in: PubMed
    Score: 0.007
  82. Functional visual streams. Curr Opin Neurobiol. 1992 Aug; 2(4):506-10.
    View in: PubMed
    Score: 0.007
  83. Extraretinal representations in area V4 in the macaque monkey. Vis Neurosci. 1991 Dec; 7(6):561-73.
    View in: PubMed
    Score: 0.007
  84. Does primate motion perception depend on the magnocellular pathway? J Neurosci. 1991 Nov; 11(11):3422-9.
    View in: PubMed
    Score: 0.007
  85. The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys. J Neurosci. 1991 Apr; 11(4):994-1001.
    View in: PubMed
    Score: 0.006
  86. Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci. 1990 Oct; 10(10):3323-34.
    View in: PubMed
    Score: 0.006
  87. Macaque vision after magnocellular lateral geniculate lesions. Vis Neurosci. 1990 Oct; 5(4):347-52.
    View in: PubMed
    Score: 0.006
  88. Deficits in speed discrimination following lesions of the lateral suprasylvian cortex in the cat. Vis Neurosci. 1989 Oct; 3(4):365-75.
    View in: PubMed
    Score: 0.006
  89. Topographic organization of the middle temporal visual area in the macaque monkey: representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. J Comp Neurol. 1987 Dec 22; 266(4):535-55.
    View in: PubMed
    Score: 0.005
  90. The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. J Neurophysiol. 1987 Apr; 57(4):1033-49.
    View in: PubMed
    Score: 0.005
  91. Visual processing in monkey extrastriate cortex. Annu Rev Neurosci. 1987; 10:363-401.
    View in: PubMed
    Score: 0.005
  92. Functions of the ON and OFF channels of the visual system. Nature. 1986 Aug 28-Sep 3; 322(6082):824-5.
    View in: PubMed
    Score: 0.005
  93. The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res. 1984; 24(5):429-48.
    View in: PubMed
    Score: 0.004
  94. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci. 1983 Dec; 3(12):2563-86.
    View in: PubMed
    Score: 0.004
  95. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol. 1983 May; 49(5):1127-47.
    View in: PubMed
    Score: 0.004
  96. Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J Neurophysiol. 1983 May; 49(5):1148-67.
    View in: PubMed
    Score: 0.004
  97. Two-dimensional maps of the cerebral cortex. J Comp Neurol. 1980 May 15; 191(2):255-81.
    View in: PubMed
    Score: 0.003
  98. On the relationship between synaptic input and spike output jitter in individual neurons. Proc Natl Acad Sci U S A. 1997 Jan 21; 94(2):735-40.
    View in: PubMed
    Score: 0.002
  99. Coding of image contrast in central visual pathways of the macaque monkey. Vision Res. 1990; 30(1):1-10.
    View in: PubMed
    Score: 0.001
  100. State dependent activity in monkey visual cortex. II. Retinal and extraretinal factors in V4. Exp Brain Res. 1988; 69(2):245-59.
    View in: PubMed
    Score: 0.001
  101. Ventral posterior visual area of the macaque: visual topography and areal boundaries. J Comp Neurol. 1986 Oct 08; 252(2):139-53.
    View in: PubMed
    Score: 0.001
  102. The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: asymmetries, areal boundaries, and patchy connections. J Comp Neurol. 1986 Feb 22; 244(4):451-80.
    View in: PubMed
    Score: 0.001
  103. The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol. 1981 Jul 01; 199(3):293-326.
    View in: PubMed
    Score: 0.001
  104. Effects of motor unit size on innervation patterns in neonatal mammals. Exp Neurol. 1980 Dec; 70(3):516-24.
    View in: PubMed
    Score: 0.001
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.