The University of Chicago Header Logo

Connection

John H.R. Maunsell to Neurons

This is a "connection" page, showing publications John H.R. Maunsell has written about Neurons.
Connection Strength

8.094
  1. Increments in visual motion coherence are more readily detected than decrements. J Vis. 2023 05 02; 23(5):18.
    View in: PubMed
    Score: 0.472
  2. Single trial neuronal activity dynamics of attentional intensity in monkey visual area V4. Nat Commun. 2021 03 31; 12(1):2003.
    View in: PubMed
    Score: 0.408
  3. The Correlation of Neuronal Signals with Behavior at Different Levels of Visual Cortex and Their Relative Reliability for Behavioral Decisions. J Neurosci. 2020 05 06; 40(19):3751-3767.
    View in: PubMed
    Score: 0.382
  4. Spatially tuned normalization explains attention modulation variance within neurons. J Neurophysiol. 2017 09 01; 118(3):1903-1913.
    View in: PubMed
    Score: 0.316
  5. Attention-related changes in correlated neuronal activity arise from normalization mechanisms. Nat Neurosci. 2017 Jul; 20(7):969-977.
    View in: PubMed
    Score: 0.313
  6. A Refined Neuronal Population Measure of Visual Attention. PLoS One. 2015; 10(8):e0136570.
    View in: PubMed
    Score: 0.277
  7. Neuronal Modulations in Visual Cortex Are Associated with Only One of Multiple Components of Attention. Neuron. 2015 Jun 03; 86(5):1182-8.
    View in: PubMed
    Score: 0.273
  8. Cortical neural populations can guide behavior by integrating inputs linearly, independent of synchrony. Proc Natl Acad Sci U S A. 2014 Jan 07; 111(1):E178-87.
    View in: PubMed
    Score: 0.247
  9. Potential confounds in estimating trial-to-trial correlations between neuronal response and behavior using choice probabilities. J Neurophysiol. 2012 Dec; 108(12):3403-15.
    View in: PubMed
    Score: 0.226
  10. Tuned normalization explains the size of attention modulations. Neuron. 2012 Feb 23; 73(4):803-13.
    View in: PubMed
    Score: 0.217
  11. Network rhythms influence the relationship between spike-triggered local field potential and functional connectivity. J Neurosci. 2011 Aug 31; 31(35):12674-82.
    View in: PubMed
    Score: 0.210
  12. Using neuronal populations to study the mechanisms underlying spatial and feature attention. Neuron. 2011 Jun 23; 70(6):1192-204.
    View in: PubMed
    Score: 0.207
  13. Effects of stimulus direction on the correlation between behavior and single units in area MT during a motion detection task. J Neurosci. 2011 Jun 01; 31(22):8230-8.
    View in: PubMed
    Score: 0.207
  14. A neuronal population measure of attention predicts behavioral performance on individual trials. J Neurosci. 2010 Nov 10; 30(45):15241-53.
    View in: PubMed
    Score: 0.199
  15. Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron. 2010 Sep 09; 67(5):885-96.
    View in: PubMed
    Score: 0.196
  16. The effect of attention on neuronal responses to high and low contrast stimuli. J Neurophysiol. 2010 Aug; 104(2):960-71.
    View in: PubMed
    Score: 0.193
  17. Attentional modulation of MT neurons with single or multiple stimuli in their receptive fields. J Neurosci. 2010 Feb 24; 30(8):3058-66.
    View in: PubMed
    Score: 0.189
  18. Spatial summation can explain the attentional modulation of neuronal responses to multiple stimuli in area V4. J Neurosci. 2008 May 07; 28(19):5115-26.
    View in: PubMed
    Score: 0.167
  19. Spatial attention does not strongly modulate neuronal responses in early human visual cortex. J Neurosci. 2007 Nov 28; 27(48):13205-9.
    View in: PubMed
    Score: 0.162
  20. Spatial attention and the latency of neuronal responses in macaque area V4. J Neurosci. 2007 Sep 05; 27(36):9632-7.
    View in: PubMed
    Score: 0.159
  21. Neuronal representations of cognitive state: reward or attention? Trends Cogn Sci. 2004 Jun; 8(6):261-5.
    View in: PubMed
    Score: 0.127
  22. Locus coeruleus norepinephrine contributes to visual-spatial attention by selectively enhancing perceptual sensitivity. Neuron. 2024 Jul 03; 112(13):2231-2240.e5.
    View in: PubMed
    Score: 0.126
  23. Stimulus-dependent differences in cortical versus subcortical contributions to visual detection in mice. Curr Biol. 2024 05 06; 34(9):1940-1952.e5.
    View in: PubMed
    Score: 0.126
  24. The effect of perceptual learning on neuronal responses in monkey visual area V4. J Neurosci. 2004 Feb 18; 24(7):1617-26.
    View in: PubMed
    Score: 0.125
  25. Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. J Neurophysiol. 2003 Jun; 89(6):3264-78.
    View in: PubMed
    Score: 0.119
  26. Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nat Neurosci. 2002 Oct; 5(10):985-94.
    View in: PubMed
    Score: 0.113
  27. Neuronal correlates of selective attention and effort in visual area V4 are invariant of motivational context. Sci Adv. 2022 06 10; 8(23):eabc8812.
    View in: PubMed
    Score: 0.111
  28. Attentional modulation of behavioral performance and neuronal responses in middle temporal and ventral intraparietal areas of macaque monkey. J Neurosci. 2002 Mar 01; 22(5):1994-2004.
    View in: PubMed
    Score: 0.109
  29. Perceptual Weighting of V1 Spikes Revealed by Optogenetic White Noise Stimulation. J Neurosci. 2022 04 13; 42(15):3122-3132.
    View in: PubMed
    Score: 0.109
  30. An Open Resource for Non-human Primate Optogenetics. Neuron. 2020 12 23; 108(6):1075-1090.e6.
    View in: PubMed
    Score: 0.099
  31. The Mind of a Mouse. Cell. 2020 09 17; 182(6):1372-1376.
    View in: PubMed
    Score: 0.098
  32. Mice Preferentially Use Increases in Cerebral Cortex Spiking to Detect Changes in Visual Stimuli. J Neurosci. 2020 10 07; 40(41):7902-7920.
    View in: PubMed
    Score: 0.098
  33. Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing. Nat Neurosci. 2000 Aug; 3(8):814-21.
    View in: PubMed
    Score: 0.097
  34. Attention to both space and feature modulates neuronal responses in macaque area V4. J Neurophysiol. 2000 Mar; 83(3):1751-5.
    View in: PubMed
    Score: 0.095
  35. Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J Neurosci. 1999 Sep 01; 19(17):7591-602.
    View in: PubMed
    Score: 0.091
  36. Specialized representations in visual cortex: a role for binding? Neuron. 1999 Sep; 24(1):79-85, 111-25.
    View in: PubMed
    Score: 0.091
  37. Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron. 1999 Aug; 23(4):765-73.
    View in: PubMed
    Score: 0.091
  38. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J Neurosci. 1999 Jan 01; 19(1):431-41.
    View in: PubMed
    Score: 0.087
  39. Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Vis Neurosci. 1999 Jan-Feb; 16(1):1-14.
    View in: PubMed
    Score: 0.087
  40. Sensory modality specificity of neural activity related to memory in visual cortex. J Neurophysiol. 1997 Sep; 78(3):1263-75.
    View in: PubMed
    Score: 0.080
  41. Attention operates uniformly throughout the classical receptive field and the surround. Elife. 2016 08 22; 5.
    View in: PubMed
    Score: 0.074
  42. Graded Neuronal Modulations Related to Visual Spatial Attention. J Neurosci. 2016 05 11; 36(19):5353-61.
    View in: PubMed
    Score: 0.073
  43. Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature. 1995 Feb 09; 373(6514):518-21.
    View in: PubMed
    Score: 0.067
  44. Responses of neurons in the parietal and temporal visual pathways during a motion task. J Neurosci. 1994 Oct; 14(10):6171-86.
    View in: PubMed
    Score: 0.065
  45. Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex. J Neurosci. 1994 Apr; 14(4):2069-79.
    View in: PubMed
    Score: 0.063
  46. Mouse primary visual cortex is used to detect both orientation and contrast changes. J Neurosci. 2013 Dec 11; 33(50):19416-22.
    View in: PubMed
    Score: 0.062
  47. Visual response latencies in striate cortex of the macaque monkey. J Neurophysiol. 1992 Oct; 68(4):1332-44.
    View in: PubMed
    Score: 0.057
  48. When attention wanders: how uncontrolled fluctuations in attention affect performance. J Neurosci. 2011 Nov 02; 31(44):15802-6.
    View in: PubMed
    Score: 0.053
  49. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 2011 Apr; 9(4):e1000610.
    View in: PubMed
    Score: 0.051
  50. Microstimulation reveals limits in detecting different signals from a local cortical region. Curr Biol. 2010 May 11; 20(9):824-8.
    View in: PubMed
    Score: 0.048
  51. Electrical microstimulation thresholds for behavioral detection and saccades in monkey frontal eye fields. Proc Natl Acad Sci U S A. 2008 May 20; 105(20):7315-20.
    View in: PubMed
    Score: 0.042
  52. Effects of task difficulty and target likelihood in area V4 of macaque monkeys. J Neurophysiol. 2006 Nov; 96(5):2377-87.
    View in: PubMed
    Score: 0.037
  53. Feature-based attention in visual cortex. Trends Neurosci. 2006 Jun; 29(6):317-22.
    View in: PubMed
    Score: 0.036
  54. Normalization in mouse primary visual cortex. PLoS One. 2023; 18(12):e0295140.
    View in: PubMed
    Score: 0.031
  55. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol. 1983 May; 49(5):1127-47.
    View in: PubMed
    Score: 0.029
  56. Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J Neurophysiol. 1983 May; 49(5):1148-67.
    View in: PubMed
    Score: 0.029
  57. The role of attention in visual processing. Philos Trans R Soc Lond B Biol Sci. 2002 Aug 29; 357(1424):1063-72.
    View in: PubMed
    Score: 0.028
  58. Physiological correlates of perceptual learning in monkey V1 and V2. J Neurophysiol. 2002 Apr; 87(4):1867-88.
    View in: PubMed
    Score: 0.027
  59. Shape selectivity in primate lateral intraparietal cortex. Nature. 1998 Oct 01; 395(6701):500-3.
    View in: PubMed
    Score: 0.021
  60. On the relationship between synaptic input and spike output jitter in individual neurons. Proc Natl Acad Sci U S A. 1997 Jan 21; 94(2):735-40.
    View in: PubMed
    Score: 0.019
  61. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature. 1996 Aug 08; 382(6591):539-41.
    View in: PubMed
    Score: 0.018
  62. The brain's visual world: representation of visual targets in cerebral cortex. Science. 1995 Nov 03; 270(5237):764-9.
    View in: PubMed
    Score: 0.018
  63. Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways. J Neurosci. 1994 Apr; 14(4):2080-8.
    View in: PubMed
    Score: 0.016
  64. Extraretinal representations in area V4 in the macaque monkey. Vis Neurosci. 1991 Dec; 7(6):561-73.
    View in: PubMed
    Score: 0.013
  65. Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci. 1990 Oct; 10(10):3323-34.
    View in: PubMed
    Score: 0.012
  66. Coding of image contrast in central visual pathways of the macaque monkey. Vision Res. 1990; 30(1):1-10.
    View in: PubMed
    Score: 0.003
  67. The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol. 1981 Jul 01; 199(3):293-326.
    View in: PubMed
    Score: 0.002
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.