The University of Chicago Header Logo

Connection

Zhen Tian to Humans

This is a "connection" page, showing publications Zhen Tian has written about Humans.
Connection Strength

0.249
  1. A machine-learning-based prediction model of fistula formation after interstitial brachytherapy for locally advanced gynecological malignancies. Brachytherapy. 2019 Jul - Aug; 18(4):530-538.
    View in: PubMed
    Score: 0.023
  2. Moving GPU-OpenCL-based Monte Carlo dose calculation toward clinical use: Automatic beam commissioning and source sampling for treatment plan dose calculation. J Appl Clin Med Phys. 2017 Mar; 18(2):69-84.
    View in: PubMed
    Score: 0.020
  3. Monte Carlo dose calculations for high-dose-rate brachytherapy using GPU-accelerated processing. Brachytherapy. 2016 May-Jun; 15(3):387-398.
    View in: PubMed
    Score: 0.019
  4. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations. Phys Med Biol. 2015 Oct 21; 60(20):7941-67.
    View in: PubMed
    Score: 0.018
  5. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC). Phys Med Biol. 2015 Oct 07; 60(19):7419-35.
    View in: PubMed
    Score: 0.018
  6. Automatic commissioning of a GPU-based Monte Carlo radiation dose calculation code for photon radiotherapy. Phys Med Biol. 2014 Nov 07; 59(21):6467-86.
    View in: PubMed
    Score: 0.017
  7. Low-dose CT reconstruction via edge-preserving total variation regularization. Phys Med Biol. 2011 Sep 21; 56(18):5949-67.
    View in: PubMed
    Score: 0.013
  8. Deep learning-based fast volumetric imaging using kV and MV projection images for lung cancer radiotherapy: A feasibility study. Med Phys. 2023 Sep; 50(9):5518-5527.
    View in: PubMed
    Score: 0.008
  9. A prediction model for dosimetric-based lung adaptive radiotherapy. Med Phys. 2022 Oct; 49(10):6319-6333.
    View in: PubMed
    Score: 0.007
  10. Deformable CT image registration via a dual feasible neural network. Med Phys. 2022 Dec; 49(12):7545-7554.
    View in: PubMed
    Score: 0.007
  11. Cascaded mutual enhancing networks for brain tumor subregion segmentation in multiparametric MRI. Phys Med Biol. 2022 04 11; 67(8).
    View in: PubMed
    Score: 0.007
  12. Lung tumor segmentation in 4D CT images using motion convolutional neural networks. Med Phys. 2021 Nov; 48(11):7141-7153.
    View in: PubMed
    Score: 0.007
  13. High through-plane resolution CT imaging with self-supervised deep learning. Phys Med Biol. 2021 07 14; 66(14).
    View in: PubMed
    Score: 0.007
  14. Deep learning-based real-time volumetric imaging for lung stereotactic body radiation therapy: a proof of concept study. Phys Med Biol. 2020 12 18; 65(23):235003.
    View in: PubMed
    Score: 0.006
  15. Automatic multi-needle localization in ultrasound images using large margin mask RCNN for ultrasound-guided prostate brachytherapy. Phys Med Biol. 2020 10 09; 65(20):205003.
    View in: PubMed
    Score: 0.006
  16. Label-driven magnetic resonance imaging (MRI)-transrectal ultrasound (TRUS) registration using weakly supervised learning for MRI-guided prostate radiotherapy. Phys Med Biol. 2020 06 26; 65(13):135002.
    View in: PubMed
    Score: 0.006
  17. Multi-Needle Detection in 3D Ultrasound Images Using Unsupervised Order-Graph Regularized Sparse Dictionary Learning. IEEE Trans Med Imaging. 2020 07; 39(7):2302-2315.
    View in: PubMed
    Score: 0.006
  18. CT prostate segmentation based on synthetic MRI-aided deep attention fully convolution network. Med Phys. 2020 Feb; 47(2):530-540.
    View in: PubMed
    Score: 0.006
  19. Full Monte Carlo-Based Biologic Treatment Plan Optimization System for Intensity Modulated Carbon Ion Therapy on Graphics Processing Unit. Int J Radiat Oncol Biol Phys. 2018 01 01; 100(1):235-243.
    View in: PubMed
    Score: 0.005
  20. Initial development of goCMC: a GPU-oriented fast cross-platform Monte Carlo engine for carbon ion therapy. Phys Med Biol. 2017 05 07; 62(9):3682-3699.
    View in: PubMed
    Score: 0.005
  21. A new approach to integrate GPU-based Monte Carlo simulation into inverse treatment plan optimization for proton therapy. Phys Med Biol. 2017 01 07; 62(1):289-305.
    View in: PubMed
    Score: 0.005
  22. A new scheme for real-time high-contrast imaging in lung cancer radiotherapy: a proof-of-concept study. Phys Med Biol. 2016 Mar 21; 61(6):2372-88.
    View in: PubMed
    Score: 0.005
  23. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy. Phys Med Biol. 2015 Nov 07; 60(21):8213-27.
    View in: PubMed
    Score: 0.004
  24. A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy. Phys Med Biol. 2015 Apr 07; 60(7):2903-19.
    View in: PubMed
    Score: 0.004
  25. Reconstructing cone-beam CT with spatially varying qualities for adaptive radiotherapy: a proof-of-principle study. Phys Med Biol. 2014 Oct 21; 59(20):6251-66.
    View in: PubMed
    Score: 0.004
  26. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning. Med Phys. 2014 Jun; 41(6):061711.
    View in: PubMed
    Score: 0.004
  27. Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs. Phys Med Biol. 2013 Dec 21; 58(24):8725-38.
    View in: PubMed
    Score: 0.004
  28. GPU-based Monte Carlo radiotherapy dose calculation using phase-space sources. Phys Med Biol. 2013 Jun 21; 58(12):4341-56.
    View in: PubMed
    Score: 0.004
  29. Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method. Med Phys. 2012 Sep; 39(9):5592-602.
    View in: PubMed
    Score: 0.004
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.