The University of Chicago Header Logo

Connection

Marcus R. Kronforst to Butterflies

This is a "connection" page, showing publications Marcus R. Kronforst has written about Butterflies.
Connection Strength

20.343
  1. Acute and Long-Term Consequences of Co-opted doublesex on the Development of Mimetic Butterfly Color Patterns. Mol Biol Evol. 2023 09 01; 40(9).
    View in: PubMed
    Score: 0.799
  2. New molecular insights into butterfly pigmentation. Cell Rep. 2023 08 29; 42(8):112981.
    View in: PubMed
    Score: 0.797
  3. Migration genetics take flight: genetic and genomic insights into monarch butterfly migration. Curr Opin Insect Sci. 2023 10; 59:101079.
    View in: PubMed
    Score: 0.790
  4. Divergent expression of aristaless1 and aristaless2 during embryonic appendage and pupal wing development in butterflies. BMC Biol. 2023 05 11; 21(1):104.
    View in: PubMed
    Score: 0.782
  5. aristaless1 has a dual role in appendage formation and wing color specification during butterfly development. BMC Biol. 2023 05 04; 21(1):100.
    View in: PubMed
    Score: 0.781
  6. Butterfly mimicry rings run in circles. Proc Natl Acad Sci U S A. 2023 01 24; 120(4):e2220680120.
    View in: PubMed
    Score: 0.766
  7. The evolution and genetics of sexually dimorphic 'dual' mimicry in the butterfly Elymnias hypermnestra. Proc Biol Sci. 2021 01 13; 288(1942):20202192.
    View in: PubMed
    Score: 0.666
  8. Migration behaviour of commercial monarchs reared outdoors and wild-derived monarchs reared indoors. Proc Biol Sci. 2020 08 12; 287(1932):20201326.
    View in: PubMed
    Score: 0.646
  9. Disentangling Population History and Character Evolution among Hybridizing Lineages. Mol Biol Evol. 2020 05 01; 37(5):1295-1305.
    View in: PubMed
    Score: 0.634
  10. A shared genetic basis of mimicry across swallowtail butterflies points to ancestral co-option of doublesex. Nat Commun. 2020 01 03; 11(1):6.
    View in: PubMed
    Score: 0.620
  11. Butterfly Mimicry Polymorphisms Highlight Phylogenetic Limits of Gene Reuse in the Evolution of Diverse Adaptations. Mol Biol Evol. 2019 12 01; 36(12):2842-2853.
    View in: PubMed
    Score: 0.616
  12. Monarch butterflies use an environmentally sensitive, internal timer to control overwintering dynamics. Mol Ecol. 2019 08; 28(16):3642-3655.
    View in: PubMed
    Score: 0.607
  13. Contemporary loss of migration in monarch butterflies. Proc Natl Acad Sci U S A. 2019 07 16; 116(29):14671-14676.
    View in: PubMed
    Score: 0.598
  14. Aristaless Controls Butterfly Wing Color Variation Used in Mimicry and Mate Choice. Curr Biol. 2018 11 05; 28(21):3469-3474.e4.
    View in: PubMed
    Score: 0.571
  15. The molecular genetic basis of herbivory between butterflies and their host plants. Nat Ecol Evol. 2018 09; 2(9):1418-1427.
    View in: PubMed
    Score: 0.562
  16. Does male preference play a role in maintaining female limited polymorphism in a Batesian mimetic butterfly? Behav Processes. 2018 May; 150:47-58.
    View in: PubMed
    Score: 0.545
  17. Tracing the origin and evolution of supergene mimicry in butterflies. Nat Commun. 2017 11 07; 8(1):1269.
    View in: PubMed
    Score: 0.534
  18. The functional basis of wing patterning in Heliconius butterflies: the molecules behind mimicry. Genetics. 2015 May; 200(1):1-19.
    View in: PubMed
    Score: 0.449
  19. Exploring the molecular basis of monarch butterfly color pattern variation: a response to A. Hume's 'Myosin--a monarch of pigment transport?'. Pigment Cell Melanoma Res. 2015 Mar; 28(2):127-30.
    View in: PubMed
    Score: 0.443
  20. Diversification of the silverspot butterflies (Nymphalidae) in the Neotropics inferred from multi-locus DNA sequences. Mol Phylogenet Evol. 2015 Jan; 82 Pt A:156-65.
    View in: PubMed
    Score: 0.431
  21. doublesex is a mimicry supergene. Nature. 2014 Mar 13; 507(7491):229-32.
    View in: PubMed
    Score: 0.414
  22. Hybridization reveals the evolving genomic architecture of speciation. Cell Rep. 2013 Nov 14; 5(3):666-77.
    View in: PubMed
    Score: 0.404
  23. Do Heliconius butterfly species exchange mimicry alleles? Biol Lett. 2013 Aug 23; 9(4):20130503.
    View in: PubMed
    Score: 0.396
  24. Cryptic genetic and wing pattern diversity in a mimetic Heliconius butterfly. Mol Ecol. 2013 May; 22(10):2760-70.
    View in: PubMed
    Score: 0.388
  25. Genome-wide characterization of adaptation and speciation in tiger swallowtail butterflies using de novo transcriptome assemblies. Genome Biol Evol. 2013; 5(6):1233-45.
    View in: PubMed
    Score: 0.382
  26. Mimetic butterflies introgress to impress. PLoS Genet. 2012; 8(6):e1002802.
    View in: PubMed
    Score: 0.368
  27. Sex chromosome mosaicism and hybrid speciation among tiger swallowtail butterflies. PLoS Genet. 2011 Sep; 7(9):e1002274.
    View in: PubMed
    Score: 0.348
  28. Comparative population genetics of a mimicry locus among hybridizing Heliconius butterfly species. Heredity (Edinb). 2011 Sep; 107(3):200-4.
    View in: PubMed
    Score: 0.335
  29. Dissecting comimetic radiations in Heliconius reveals divergent histories of convergent butterflies. Proc Natl Acad Sci U S A. 2010 Apr 20; 107(16):7365-70.
    View in: PubMed
    Score: 0.316
  30. Polymorphic butterfly reveals the missing link in ecological speciation. Science. 2009 Nov 06; 326(5954):847-50.
    View in: PubMed
    Score: 0.307
  31. Gene flow persists millions of years after speciation in Heliconius butterflies. BMC Evol Biol. 2008 Mar 27; 8:98.
    View in: PubMed
    Score: 0.274
  32. The population genetics of mimetic diversity in Heliconius butterflies. Proc Biol Sci. 2008 Mar 07; 275(1634):493-500.
    View in: PubMed
    Score: 0.273
  33. No genomic mosaicism in a putative hybrid butterfly species. Proc Biol Sci. 2007 May 22; 274(1615):1255-64.
    View in: PubMed
    Score: 0.259
  34. Reinforcement of mate preference among hybridizing Heliconius butterflies. J Evol Biol. 2007 Jan; 20(1):278-85.
    View in: PubMed
    Score: 0.252
  35. Parallel genetic architecture of parallel adaptive radiations in mimetic Heliconius butterflies. Genetics. 2006 Sep; 174(1):535-9.
    View in: PubMed
    Score: 0.243
  36. Multilocus analyses of admixture and introgression among hybridizing Heliconius butterflies. Evolution. 2006 Jun; 60(6):1254-68.
    View in: PubMed
    Score: 0.242
  37. Linkage of butterfly mate preference and wing color preference cue at the genomic location of wingless. Proc Natl Acad Sci U S A. 2006 Apr 25; 103(17):6575-80.
    View in: PubMed
    Score: 0.240
  38. Museum genomics reveals the Xerces blue butterfly (Glaucopsyche xerces) was a distinct species driven to extinction. Biol Lett. 2021 07; 17(7):20210123.
    View in: PubMed
    Score: 0.173
  39. Lack of genetic differentiation among widely spaced subpopulations of a butterfly with home range behaviour. Heredity (Edinb). 2001 Feb; 86(Pt 2):243-50.
    View in: PubMed
    Score: 0.167
  40. Genomic evidence for gene flow between monarchs with divergent migratory phenotypes and flight performance. Mol Ecol. 2020 07; 29(14):2567-2582.
    View in: PubMed
    Score: 0.161
  41. The roles of hybridization and habitat fragmentation in the evolution of Brazil's enigmatic longwing butterflies, Heliconius nattereri and H. hermathena. BMC Biol. 2020 07 03; 18(1):84.
    View in: PubMed
    Score: 0.161
  42. Genomic architecture and introgression shape a butterfly radiation. Science. 2019 11 01; 366(6465):594-599.
    View in: PubMed
    Score: 0.153
  43. Comparative Transcriptomics Provides Insights into Reticulate and Adaptive Evolution of a Butterfly Radiation. Genome Biol Evol. 2019 10 01; 11(10):2963-2975.
    View in: PubMed
    Score: 0.152
  44. Frequency dependence shapes the adaptive landscape of imperfect Batesian mimicry. Proc Biol Sci. 2018 04 11; 285(1876).
    View in: PubMed
    Score: 0.138
  45. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nat Commun. 2015 Sep 10; 6:8212.
    View in: PubMed
    Score: 0.115
  46. Serial founder effects and genetic differentiation during worldwide range expansion of monarch butterflies. Proc Biol Sci. 2014 12 22; 281(1797).
    View in: PubMed
    Score: 0.109
  47. The genetics of monarch butterfly migration and warning colouration. Nature. 2014 Oct 16; 514(7522):317-21.
    View in: PubMed
    Score: 0.108
  48. Ancient homology underlies adaptive mimetic diversity across butterflies. Nat Commun. 2014 Sep 08; 5:4817.
    View in: PubMed
    Score: 0.107
  49. Phylogeography of Heliconius cydno and its closest relatives: disentangling their origin and diversification. Mol Ecol. 2014 Aug; 23(16):4137-52.
    View in: PubMed
    Score: 0.106
  50. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc Natl Acad Sci U S A. 2012 Jul 31; 109(31):12632-7.
    View in: PubMed
    Score: 0.092
  51. Unraveling the thread of nature's tapestry: the genetics of diversity and convergence in animal pigmentation. Pigment Cell Melanoma Res. 2012 Jul; 25(4):411-33.
    View in: PubMed
    Score: 0.092
  52. Wing patterning gene redefines the mimetic history of Heliconius butterflies. Proc Natl Acad Sci U S A. 2011 Dec 06; 108(49):19666-71.
    View in: PubMed
    Score: 0.088
  53. optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science. 2011 Aug 26; 333(6046):1137-41.
    View in: PubMed
    Score: 0.086
  54. Comparative population genetics of mimetic Heliconius butterflies in an endangered habitat; Brazil's Atlantic Forest. BMC Genet. 2011 Jan 20; 12:9.
    View in: PubMed
    Score: 0.083
  55. Mate preference across the speciation continuum in a clade of mimetic butterflies. Evolution. 2011 May; 65(5):1489-500.
    View in: PubMed
    Score: 0.083
  56. Gene flow and the genealogical history of Heliconius heurippa. BMC Evol Biol. 2008 May 02; 8:132.
    View in: PubMed
    Score: 0.069
  57. Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in the Heliconius melpomene clade. PLoS Genet. 2010 Feb 05; 6(2):e1000794.
    View in: PubMed
    Score: 0.020
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.