The University of Chicago Header Logo

Connection

Tao Pan to Bacillus subtilis

This is a "connection" page, showing publications Tao Pan has written about Bacillus subtilis.
Connection Strength

3.528
  1. Reduced contact order and RNA folding rates. J Mol Biol. 2004 Oct 01; 342(5):1359-65.
    View in: PubMed
    Score: 0.242
  2. Interaction of the Bacillus subtilis RNase P with the 30S ribosomal subunit. RNA. 2004 Mar; 10(3):482-92.
    View in: PubMed
    Score: 0.233
  3. Dimeric and monomeric Bacillus subtilis RNase P holoenzyme in the absence and presence of pre-tRNA substrates. Biochemistry. 2002 Oct 29; 41(43):12986-94.
    View in: PubMed
    Score: 0.212
  4. Modular construction of a tertiary RNA structure: the specificity domain of the Bacillus subtilis RNase P RNA. Biochemistry. 2001 Sep 18; 40(37):11202-10.
    View in: PubMed
    Score: 0.196
  5. Modular construction for function of a ribonucleoprotein enzyme: the catalytic domain of Bacillus subtilis RNase P complexed with B. subtilis RNase P protein. Nucleic Acids Res. 2001 May 01; 29(9):1892-7.
    View in: PubMed
    Score: 0.191
  6. The Bacillus subtilis RNase P holoenzyme contains two RNase P RNA and two RNase P protein subunits. RNA. 2001 Feb; 7(2):233-41.
    View in: PubMed
    Score: 0.188
  7. The 3' substrate determinants for the catalytic efficiency of the Bacillus subtilis RNase P holoenzyme suggest autolytic processing of the RNase P RNA in vivo. RNA. 2000 Oct; 6(10):1413-22.
    View in: PubMed
    Score: 0.184
  8. Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites. Nucleic Acids Res. 1999 Nov 01; 27(21):4298-304.
    View in: PubMed
    Score: 0.172
  9. Pathway modulation, circular permutation and rapid RNA folding under kinetic control. J Mol Biol. 1999 Feb 26; 286(3):721-31.
    View in: PubMed
    Score: 0.164
  10. Recognition of a pre-tRNA substrate by the Bacillus subtilis RNase P holoenzyme. Biochemistry. 1998 Nov 03; 37(44):15466-73.
    View in: PubMed
    Score: 0.161
  11. Interaction of structural modules in substrate binding by the ribozyme from Bacillus subtilis RNase P. Nucleic Acids Res. 1998 Aug 15; 26(16):3717-23.
    View in: PubMed
    Score: 0.158
  12. Recognition of the 5' leader and the acceptor stem of a pre-tRNA substrate by the ribozyme from Bacillus subtilis RNase P. Biochemistry. 1998 Jul 14; 37(28):10126-33.
    View in: PubMed
    Score: 0.157
  13. Intermediates and kinetic traps in the folding of a large ribozyme revealed by circular dichroism and UV absorbance spectroscopies and catalytic activity. Nat Struct Biol. 1997 Nov; 4(11):931-8.
    View in: PubMed
    Score: 0.150
  14. Recognition of the T stem-loop of a pre-tRNA substrate by the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry. 1997 May 27; 36(21):6317-25.
    View in: PubMed
    Score: 0.146
  15. Multiple substrate binding sites in the ribozyme from Bacillus subtilis RNase P. EMBO J. 1996 May 01; 15(9):2249-55.
    View in: PubMed
    Score: 0.135
  16. Higher order folding and domain analysis of the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry. 1995 Jan 24; 34(3):902-9.
    View in: PubMed
    Score: 0.124
  17. Selection of circularly permuted ribozymes from Bacillus subtilis RNAse P by substrate binding. Biochemistry. 1994 Nov 29; 33(47):14207-12.
    View in: PubMed
    Score: 0.122
  18. Extended structures in RNA folding intermediates are due to nonnative interactions rather than electrostatic repulsion. J Mol Biol. 2010 Apr 16; 397(5):1298-306.
    View in: PubMed
    Score: 0.088
  19. Efficient fluorescence labeling of a large RNA through oligonucleotide hybridization. RNA. 2005 Feb; 11(2):234-9.
    View in: PubMed
    Score: 0.061
  20. Exploring the regulation of tRNA distribution on the genomic scale. J Mol Biol. 2004 Mar 12; 337(1):31-47.
    View in: PubMed
    Score: 0.058
  21. Stepwise conversion of a mesophilic to a thermophilic ribozyme. J Mol Biol. 2003 Jul 04; 330(2):177-83.
    View in: PubMed
    Score: 0.056
  22. Crystal structure of the specificity domain of ribonuclease P. Nature. 2003 Feb 13; 421(6924):760-4.
    View in: PubMed
    Score: 0.054
  23. Mg2+-dependent compaction and folding of yeast tRNAPhe and the catalytic domain of the B. subtilis RNase P RNA determined by small-angle X-ray scattering. Biochemistry. 2000 Sep 12; 39(36):11107-13.
    View in: PubMed
    Score: 0.046
  24. Mg2+-dependent folding of a large ribozyme without kinetic traps. Nat Struct Biol. 1999 Dec; 6(12):1091-5.
    View in: PubMed
    Score: 0.043
  25. Folding of a large ribozyme during transcription and the effect of the elongation factor NusA. Proc Natl Acad Sci U S A. 1999 Aug 17; 96(17):9545-50.
    View in: PubMed
    Score: 0.042
  26. The cleavage step of ribonuclease P catalysis is determined by ribozyme-substrate interactions both distal and proximal to the cleavage site. Biochemistry. 1999 Jul 06; 38(27):8612-20.
    View in: PubMed
    Score: 0.042
  27. Microbiome characterization by high-throughput transfer RNA sequencing and modification analysis. Nat Commun. 2018 12 17; 9(1):5353.
    View in: PubMed
    Score: 0.041
  28. Domain structure of the ribozyme from eubacterial ribonuclease P. RNA. 1996 Jun; 2(6):551-63.
    View in: PubMed
    Score: 0.034
  29. Structure of a folding intermediate reveals the interplay between core and peripheral elements in RNA folding. J Mol Biol. 2005 Sep 23; 352(3):712-22.
    View in: PubMed
    Score: 0.016
  30. A thermodynamic framework and cooperativity in the tertiary folding of a Mg2+-dependent ribozyme. Biochemistry. 1999 Dec 21; 38(51):16840-6.
    View in: PubMed
    Score: 0.011
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.