The University of Chicago Header Logo

Connection

Tao Pan to RNA, Transfer

This is a "connection" page, showing publications Tao Pan has written about RNA, Transfer.
Connection Strength

16.583
  1. tRNA flux and consistency in differentiation. Nat Cell Biol. 2024 Jan; 26(1):37-38.
    View in: PubMed
    Score: 0.843
  2. Engineered mischarged transfer RNAs for correcting pathogenic missense mutations. Mol Ther. 2024 Feb 07; 32(2):352-371.
    View in: PubMed
    Score: 0.840
  3. Single-read tRNA-seq analysis reveals coordination of tRNA modification and aminoacylation and fragmentation. Nucleic Acids Res. 2023 02 22; 51(3):e17.
    View in: PubMed
    Score: 0.794
  4. A multiplex platform for small RNA sequencing elucidates multifaceted tRNA stress response and translational regulation. Nat Commun. 2022 05 05; 13(1):2491.
    View in: PubMed
    Score: 0.751
  5. Detection and quantification of glycosylated queuosine modified tRNAs by acid denaturing and APB gels. RNA. 2020 09; 26(9):1291-1298.
    View in: PubMed
    Score: 0.656
  6. A dual function PUS enzyme. Nat Chem Biol. 2020 02; 16(2):107-108.
    View in: PubMed
    Score: 0.642
  7. Modifications and functional genomics of human transfer RNA. Cell Res. 2018 Apr; 28(4):395-404.
    View in: PubMed
    Score: 0.561
  8. Determination of tRNA aminoacylation levels by high-throughput sequencing. Nucleic Acids Res. 2017 Aug 21; 45(14):e133.
    View in: PubMed
    Score: 0.542
  9. Selective Enzymatic Demethylation of N2 ,N2 -Dimethylguanosine in RNA and Its Application in High-Throughput tRNA Sequencing. Angew Chem Int Ed Engl. 2017 04 24; 56(18):5017-5020.
    View in: PubMed
    Score: 0.528
  10. tRNA Misacylation with Methionine in the Mouse Gut Microbiome in Situ. Microb Ecol. 2017 07; 74(1):10-14.
    View in: PubMed
    Score: 0.520
  11. Global tRNA misacylation induced by anaerobiosis and antibiotic exposure broadly increases stress resistance in Escherichia coli. Nucleic Acids Res. 2016 Dec 01; 44(21):10292-10303.
    View in: PubMed
    Score: 0.509
  12. tRNA base methylation identification and quantification via high-throughput sequencing. RNA. 2016 11; 22(11):1771-1784.
    View in: PubMed
    Score: 0.508
  13. Efficient and quantitative high-throughput tRNA sequencing. Nat Methods. 2015 Sep; 12(9):835-837.
    View in: PubMed
    Score: 0.470
  14. My adventure in tRNA biology, so far. RNA. 2015 Apr; 21(4):707-8.
    View in: PubMed
    Score: 0.459
  15. Diversity of human tRNA genes from the 1000-genomes project. RNA Biol. 2013 Dec; 10(12):1853-67.
    View in: PubMed
    Score: 0.420
  16. Discovering RNA-protein interactome by using chemical context profiling of the RNA-protein interface. Cell Rep. 2013 May 30; 3(5):1703-13.
    View in: PubMed
    Score: 0.403
  17. Misacylation of specific nonmethionyl tRNAs by a bacterial methionyl-tRNA synthetase. Proc Natl Acad Sci U S A. 2011 Apr 26; 108(17):6933-8.
    View in: PubMed
    Score: 0.349
  18. Genome-wide analysis of aminoacylation (charging) levels of tRNA using microarrays. J Vis Exp. 2010 Jun 18; (40).
    View in: PubMed
    Score: 0.330
  19. Genome-wide analysis of N1-methyl-adenosine modification in human tRNAs. RNA. 2010 Jul; 16(7):1317-27.
    View in: PubMed
    Score: 0.328
  20. Functional analysis of human tRNA isodecoders. J Mol Biol. 2010 Feb 26; 396(3):821-31.
    View in: PubMed
    Score: 0.319
  21. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res. 2009 Nov; 37(21):7268-80.
    View in: PubMed
    Score: 0.316
  22. High levels of tRNA abundance and alteration of tRNA charging by bortezomib in multiple myeloma. Biochem Biophys Res Commun. 2009 Jul 24; 385(2):160-4.
    View in: PubMed
    Score: 0.306
  23. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2006 Dec; 2(12):e221.
    View in: PubMed
    Score: 0.257
  24. Diversity of tRNA genes in eukaryotes. Nucleic Acids Res. 2006; 34(21):6137-46.
    View in: PubMed
    Score: 0.257
  25. Exploring the regulation of tRNA distribution on the genomic scale. J Mol Biol. 2004 Mar 12; 337(1):31-47.
    View in: PubMed
    Score: 0.214
  26. Dimeric and monomeric Bacillus subtilis RNase P holoenzyme in the absence and presence of pre-tRNA substrates. Biochemistry. 2002 Oct 29; 41(43):12986-94.
    View in: PubMed
    Score: 0.194
  27. Analysis of queuosine and 2-thio tRNA modifications by high throughput sequencing. Nucleic Acids Res. 2022 09 23; 50(17):e99.
    View in: PubMed
    Score: 0.193
  28. tRNA modification dynamics from individual organisms to metaepitranscriptomics of microbiomes. Mol Cell. 2022 03 03; 82(5):891-906.
    View in: PubMed
    Score: 0.184
  29. Modular construction of a tertiary RNA structure: the specificity domain of the Bacillus subtilis RNase P RNA. Biochemistry. 2001 Sep 18; 40(37):11202-10.
    View in: PubMed
    Score: 0.180
  30. Quantitative probing of glycosylated queuosine modifications in tRNA. Methods Enzymol. 2021; 658:73-82.
    View in: PubMed
    Score: 0.178
  31. Pseudouridine RNA modification detection and quantification by RT-PCR. Methods. 2022 07; 203:1-4.
    View in: PubMed
    Score: 0.176
  32. A high-throughput screening method for evolving a demethylase enzyme with improved and new functionalities. Nucleic Acids Res. 2021 03 18; 49(5):e30.
    View in: PubMed
    Score: 0.174
  33. Cross-editing by a tRNA synthetase allows vertebrates to abundantly express mischargeable tRNA without causing mistranslation. Nucleic Acids Res. 2020 07 09; 48(12):6445-6457.
    View in: PubMed
    Score: 0.166
  34. Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites. Nucleic Acids Res. 1999 Nov 01; 27(21):4298-304.
    View in: PubMed
    Score: 0.158
  35. Sensitive and quantitative probing of pseudouridine modification in mRNA and long noncoding RNA. RNA. 2019 09; 25(9):1218-1225.
    View in: PubMed
    Score: 0.154
  36. Microbiome characterization by high-throughput transfer RNA sequencing and modification analysis. Nat Commun. 2018 12 17; 9(1):5353.
    View in: PubMed
    Score: 0.149
  37. Queuosine modification protects cognate tRNAs against ribonuclease cleavage. RNA. 2018 10; 24(10):1305-1313.
    View in: PubMed
    Score: 0.144
  38. Function and origin of mistranslation in distinct cellular contexts. Crit Rev Biochem Mol Biol. 2017 Apr; 52(2):205-219.
    View in: PubMed
    Score: 0.130
  39. ALKBH1-Mediated tRNA Demethylation Regulates Translation. Cell. 2016 Oct 20; 167(3):816-828.e16.
    View in: PubMed
    Score: 0.128
  40. Evolutionary Gain of Alanine Mischarging to Noncognate tRNAs with a G4:U69 Base Pair. J Am Chem Soc. 2016 10 05; 138(39):12948-12955.
    View in: PubMed
    Score: 0.127
  41. Stress Response and Adaptation Mediated by Amino Acid Misincorporation during Protein Synthesis. Adv Nutr. 2016 07; 7(4):773S-9S.
    View in: PubMed
    Score: 0.126
  42. Interaction of tRNA with MEK2 in pancreatic cancer cells. Sci Rep. 2016 06 15; 6:28260.
    View in: PubMed
    Score: 0.125
  43. Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperatures. Nucleic Acids Res. 2016 Jan 08; 44(1):294-303.
    View in: PubMed
    Score: 0.121
  44. A nutrient-driven tRNA modification alters translational fidelity and genome-wide protein coding across an animal genus. PLoS Biol. 2014 Dec; 12(12):e1002015.
    View in: PubMed
    Score: 0.112
  45. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol Cell Biol. 2014 Jul; 34(13):2450-63.
    View in: PubMed
    Score: 0.108
  46. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress. PLoS Genet. 2013 Aug; 9(8):e1003767.
    View in: PubMed
    Score: 0.103
  47. Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells. RNA. 2013 Apr; 19(4):461-6.
    View in: PubMed
    Score: 0.099
  48. Vaccinia and influenza A viruses select rather than adjust tRNAs to optimize translation. Nucleic Acids Res. 2013 Feb 01; 41(3):1914-21.
    View in: PubMed
    Score: 0.098
  49. Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J Biol Chem. 2012 Dec 14; 287(51):42708-25.
    View in: PubMed
    Score: 0.097
  50. A role for tRNA modifications in genome structure and codon usage. Cell. 2012 Mar 30; 149(1):202-13.
    View in: PubMed
    Score: 0.093
  51. Rationalization and prediction of selective decoding of pseudouridine-modified nonsense and sense codons. RNA. 2012 Mar; 18(3):355-67.
    View in: PubMed
    Score: 0.092
  52. Cellular dynamics of RNA modification. Acc Chem Res. 2011 Dec 20; 44(12):1380-8.
    View in: PubMed
    Score: 0.088
  53. The AlkB domain of mammalian ABH8 catalyzes hydroxylation of 5-methoxycarbonylmethyluridine at the wobble position of tRNA. Angew Chem Int Ed Engl. 2010 Nov 15; 49(47):8885-8.
    View in: PubMed
    Score: 0.085
  54. Selective control of amino acid metabolism by the GCN2 eIF2 kinase pathway in Saccharomyces cerevisiae. BMC Biochem. 2010 Aug 04; 11:29.
    View in: PubMed
    Score: 0.083
  55. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell. 2010 Apr 16; 141(2):344-54.
    View in: PubMed
    Score: 0.081
  56. Selective charging of tRNA isoacceptors induced by amino-acid starvation. EMBO Rep. 2005 Feb; 6(2):151-7.
    View in: PubMed
    Score: 0.057
  57. Design, construction, and functional characterization of a tRNA neochromosome in yeast. Cell. 2023 11 22; 186(24):5237-5253.e22.
    View in: PubMed
    Score: 0.052
  58. ALKBH7-mediated demethylation regulates mitochondrial polycistronic RNA processing. Nat Cell Biol. 2021 07; 23(7):684-691.
    View in: PubMed
    Score: 0.044
  59. Tissue-specific reprogramming of host tRNA transcriptome by the microbiome. Genome Res. 2021 06; 31(6):947-957.
    View in: PubMed
    Score: 0.044
  60. CMT disease severity correlates with mutation-induced open conformation of histidyl-tRNA synthetase, not aminoacylation loss, in patient cells. Proc Natl Acad Sci U S A. 2019 09 24; 116(39):19440-19448.
    View in: PubMed
    Score: 0.039
  61. Interaction of structural modules in substrate binding by the ribozyme from Bacillus subtilis RNase P. Nucleic Acids Res. 1998 Aug 15; 26(16):3717-23.
    View in: PubMed
    Score: 0.036
  62. Hili Inhibits HIV Replication in Activated T Cells. J Virol. 2017 06 01; 91(11).
    View in: PubMed
    Score: 0.033
  63. Codon optimality controls differential mRNA translation during amino acid starvation. RNA. 2016 11; 22(11):1719-1727.
    View in: PubMed
    Score: 0.032
  64. A self-defeating anabolic program leads to ß-cell apoptosis in endoplasmic reticulum stress-induced diabetes via regulation of amino acid flux. J Biol Chem. 2013 Jun 14; 288(24):17202-13.
    View in: PubMed
    Score: 0.025
  65. Environmental perturbations lift the degeneracy of the genetic code to regulate protein levels in bacteria. Proc Natl Acad Sci U S A. 2013 Feb 05; 110(6):2419-24.
    View in: PubMed
    Score: 0.025
  66. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature. 2012 Nov 01; 491(7422):125-8.
    View in: PubMed
    Score: 0.024
  67. Misacylation of tRNA with methionine in Saccharomyces cerevisiae. Nucleic Acids Res. 2012 Nov 01; 40(20):10494-506.
    View in: PubMed
    Score: 0.024
  68. Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem. 2010 May 28; 285(22):16893-911.
    View in: PubMed
    Score: 0.020
  69. Genome-wide analysis of tRNA charging and activation of the eIF2 kinase Gcn2p. J Biol Chem. 2009 Sep 11; 284(37):25254-67.
    View in: PubMed
    Score: 0.019
  70. Structure of ribonuclease P--a universal ribozyme. Curr Opin Struct Biol. 2006 Jun; 16(3):327-35.
    View in: PubMed
    Score: 0.015
  71. Crystal structure of the RNA component of bacterial ribonuclease P. Nature. 2005 Sep 22; 437(7058):584-7.
    View in: PubMed
    Score: 0.015
  72. Basis for structural diversity in homologous RNAs. Science. 2004 Oct 01; 306(5693):104-7.
    View in: PubMed
    Score: 0.014
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.