The University of Chicago Header Logo

Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Xiaobing Fan and Milica Medved.
Connection Strength

1.805
  1. Introduction to matrix-based method for analyzing hybrid multidimensional prostate MRI data. J Appl Clin Med Phys. 2024 Nov 20; e14544.
    View in: PubMed
    Score: 0.248
  2. Standardization of Breast Dynamic Contrast-enhanced MRI Signal with Application to the Assessment of Background Parenchymal Enhancement Rate. Curr Med Imaging. 2023 Mar 06.
    View in: PubMed
    Score: 0.221
  3. Signal intensity form of the Tofts model for quantitative analysis of prostate dynamic contrast enhanced MRI data. Phys Med Biol. 2021 01 22; 66(2):025002.
    View in: PubMed
    Score: 0.191
  4. Non-contrast enhanced MRI for evaluation of breast lesions: comparison of non-contrast enhanced high spectral and spatial resolution (HiSS) images versus contrast enhanced fat-suppressed images. Acad Radiol. 2011 Dec; 18(12):1467-74.
    View in: PubMed
    Score: 0.100
  5. Fourier component imaging of water resonance in the human breast provides markers for malignancy. Phys Med Biol. 2009 Oct 07; 54(19):5767-79.
    View in: PubMed
    Score: 0.087
  6. Fat suppression with spectrally selective inversion vs. high spectral and spatial resolution MRI of breast lesions: qualitative and quantitative comparisons. J Magn Reson Imaging. 2006 Dec; 24(6):1311-5.
    View in: PubMed
    Score: 0.072
  7. Diagnosis of suspicious breast lesions using an empirical mathematical model for dynamic contrast-enhanced MRI. Magn Reson Imaging. 2007 Jun; 25(5):593-603.
    View in: PubMed
    Score: 0.071
  8. Multi-slice DCE-MRI data using P760 distinguishes between metastatic and non-metastatic rodent prostate tumors. MAGMA. 2006 Feb; 19(1):15-21.
    View in: PubMed
    Score: 0.067
  9. Quantitative Multi-Parametric MRI of the Prostate Reveals Racial Differences. Cancers (Basel). 2024 Oct 16; 16(20).
    View in: PubMed
    Score: 0.062
  10. Fourier components of inhomogeneously broadened water resonances in breast: a new source of MRI contrast. Magn Reson Med. 2004 Jul; 52(1):193-6.
    View in: PubMed
    Score: 0.060
  11. New model for analysis of dynamic contrast-enhanced MRI data distinguishes metastatic from nonmetastatic transplanted rodent prostate tumors. Magn Reson Med. 2004 Mar; 51(3):487-94.
    View in: PubMed
    Score: 0.059
  12. Prostate Cancers Invisible on Multiparametric MRI: Pathologic Features in Correlation with Whole-Mount Prostatectomy. Cancers (Basel). 2023 Dec 13; 15(24).
    View in: PubMed
    Score: 0.058
  13. The effect of varying spectral resolution on the quality of high spectral and spatial resolution magnetic resonance images of the breast. J Magn Reson Imaging. 2003 Oct; 18(4):442-8.
    View in: PubMed
    Score: 0.057
  14. Directional and inter-acquisition variability in diffusion-weighted imaging and editing for restricted diffusion. Magn Reson Med. 2022 11; 88(5):2298-2310.
    View in: PubMed
    Score: 0.053
  15. Physically implausible signals as a quantitative quality assessment metric in prostate diffusion-weighted MR imaging. Abdom Radiol (NY). 2022 07; 47(7):2500-2508.
    View in: PubMed
    Score: 0.052
  16. A compact solution for estimation of physiological parameters from ultrafast prostate dynamic contrast enhanced MRI. Phys Med Biol. 2019 08 07; 64(15):155012.
    View in: PubMed
    Score: 0.043
  17. Use of Indicator Dilution Principle to Evaluate Accuracy of Arterial Input Function Measured With Low-Dose Ultrafast Prostate Dynamic Contrast-Enhanced MRI. Tomography. 2019 06; 5(2):260-265.
    View in: PubMed
    Score: 0.043
  18. Comparison of arterial input functions measured from ultra-fast dynamic contrast enhanced MRI and dynamic contrast enhanced computed tomography in prostate cancer patients. Phys Med Biol. 2018 01 30; 63(3):03NT01.
    View in: PubMed
    Score: 0.039
  19. Ultrafast Bilateral DCE-MRI of the Breast with Conventional Fourier Sampling: Preliminary Evaluation of Semi-quantitative Analysis. Acad Radiol. 2016 09; 23(9):1137-44.
    View in: PubMed
    Score: 0.035
  20. Arterial input functions (AIFs) measured directly from arteries with low and standard doses of contrast agent, and AIFs derived from reference tissues. Magn Reson Imaging. 2016 Feb; 34(2):197-203.
    View in: PubMed
    Score: 0.033
  21. B1 and T1 mapping of the breast with a reference tissue method. Magn Reson Med. 2016 Apr; 75(4):1565-73.
    View in: PubMed
    Score: 0.032
  22. Comparison of dynamic contrast-enhanced MRI parameters of breast lesions at 1.5 and 3.0?T: a pilot study. Br J Radiol. 2015 May; 88(1049):20150021.
    View in: PubMed
    Score: 0.032
  23. Characterizing early contrast uptake of ductal carcinoma in situ with high temporal resolution dynamic contrast-enhanced MRI of the breast: a pilot study. Phys Med Biol. 2010 Oct 07; 55(19):N473-85.
    View in: PubMed
    Score: 0.023
  24. Sensitivity to tumor microvasculature without contrast agents in high spectral and spatial resolution MR images. Magn Reson Med. 2009 Feb; 61(2):291-8.
    View in: PubMed
    Score: 0.021
  25. Quantitative analysis of water proton spectral lineshape: a novel source of contrast in MRI. Phys Med Biol. 2008 Sep 07; 53(17):4509-22.
    View in: PubMed
    Score: 0.020
  26. Breast MR imaging with high spectral and spatial resolutions: preliminary experience. Radiology. 2002 Aug; 224(2):577-85.
    View in: PubMed
    Score: 0.013
  27. Spectrally inhomogeneous effects of contrast agents in breast lesion detected by high spectral and spatial resolution MRI. Acad Radiol. 2002 Aug; 9 Suppl 2:S352-4.
    View in: PubMed
    Score: 0.013
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.