The University of Chicago Header Logo

Connection

Paul Vezina to Central Nervous System Stimulants

This is a "connection" page, showing publications Paul Vezina has written about Central Nervous System Stimulants.
  1. Maladaptive consequences of repeated intermittent exposure to uncertainty. Prog Neuropsychopharmacol Biol Psychiatry. 2020 04 20; 99:109864.
    View in: PubMed
    Score: 0.590
  2. Exposure to conditions of uncertainty promotes the pursuit of amphetamine. Neuropsychopharmacology. 2019 01; 44(2):274-280.
    View in: PubMed
    Score: 0.526
  3. Sensitizing exposure to amphetamine increases AMPA receptor phosphorylation without increasing cell surface expression in the rat nucleus accumbens. Neuropharmacology. 2017 05 01; 117:328-337.
    View in: PubMed
    Score: 0.483
  4. Stimuli associated with the presence or absence of amphetamine regulate cytoskeletal signaling and behavior. Eur Neuropsychopharmacol. 2016 11; 26(11):1836-1842.
    View in: PubMed
    Score: 0.470
  5. PKC phosphorylates residues in the N-terminal of the DA transporter to regulate amphetamine-induced DA efflux. Neurosci Lett. 2016 05 27; 622:78-82.
    View in: PubMed
    Score: 0.456
  6. Inhibiting cyclin-dependent kinase 5 in the nucleus accumbens enhances the expression of amphetamine-induced locomotor conditioning. Behav Brain Res. 2014 Dec 15; 275:96-100.
    View in: PubMed
    Score: 0.407
  7. Locomotor conditioning by amphetamine requires cyclin-dependent kinase 5 signaling in the nucleus accumbens. Neuropharmacology. 2014 Oct; 85:243-52.
    View in: PubMed
    Score: 0.400
  8. Unpredictable saccharin reinforcement enhances locomotor responding to amphetamine. Behav Brain Res. 2012 Jan 01; 226(1):340-4.
    View in: PubMed
    Score: 0.331
  9. Previous exposure to delta9-tetrahydrocannibinol enhances locomotor responding to but not self-administration of amphetamine. J Pharmacol Exp Ther. 2011 Jun; 337(3):724-33.
    View in: PubMed
    Score: 0.319
  10. Transient overexpression of alpha-Ca2+/calmodulin-dependent protein kinase II in the nucleus accumbens shell enhances behavioral responding to amphetamine. J Neurosci. 2010 Jan 20; 30(3):939-49.
    View in: PubMed
    Score: 0.295
  11. Inhibition of CaMKII in the nucleus accumbens shell decreases enhanced amphetamine intake in sensitized rats. Neurosci Lett. 2008 Oct 24; 444(2):157-60.
    View in: PubMed
    Score: 0.267
  12. Appetitive sensitization by amphetamine does not reduce its ability to produce conditioned taste aversion to saccharin. Behav Brain Res. 2006 Dec 15; 175(2):305-14.
    View in: PubMed
    Score: 0.235
  13. Blockade of group II metabotropic glutamate receptors in the nucleus accumbens produces hyperlocomotion in rats previously exposed to amphetamine. Neuropharmacology. 2006 Oct; 51(5):986-92.
    View in: PubMed
    Score: 0.232
  14. Blockade of D2 dopamine receptors in the VTA induces a long-lasting enhancement of the locomotor activating effects of amphetamine. Behav Pharmacol. 2004 Sep; 15(5-6):387-95.
    View in: PubMed
    Score: 0.203
  15. Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci Biobehav Rev. 2004 Jan; 27(8):827-39.
    View in: PubMed
    Score: 0.194
  16. The mGlu2/3 receptor agonist LY379268 blocks the expression of locomotor sensitization by amphetamine. Pharmacol Biochem Behav. 2002 Sep; 73(2):333-7.
    View in: PubMed
    Score: 0.177
  17. Induction of locomotor sensitization by amphetamine requires the activation of NMDA receptors in the rat ventral tegmental area. Psychopharmacology (Berl). 2000 Aug; 151(2-3):184-91.
    View in: PubMed
    Score: 0.153
  18. Group II, but not group I, metabotropic glutamate receptors in the rat nucleus accumbens contribute to amphetamine-induced locomotion. Neuropharmacology. 2000 Jul 24; 39(10):1692-9.
    View in: PubMed
    Score: 0.153
  19. The effect of previous exposure to amphetamine on drug-induced locomotion and self-administration of a low dose of the drug. Psychopharmacology (Berl). 1999 Nov; 147(2):125-34.
    View in: PubMed
    Score: 0.145
  20. Metabotropic glutamate receptors are necessary for sensitization by amphetamine. Neuroreport. 1998 Feb 16; 9(3):403-6.
    View in: PubMed
    Score: 0.129
  21. The metabotropic glutamate receptor antagonist (RS)-MCPG produces hyperlocomotion in amphetamine pre-exposed rats. Neuropharmacology. 1998; 37(2):189-97.
    View in: PubMed
    Score: 0.128
  22. Predisposition to self-administer amphetamine: the contribution of response to novelty and prior exposure to the drug. Psychopharmacology (Berl). 1997 Feb; 129(3):277-84.
    View in: PubMed
    Score: 0.120
  23. Persistent reversal of enhanced amphetamine intake by transient CaMKII inhibition. J Neurosci. 2013 Jan 23; 33(4):1411-6.
    View in: PubMed
    Score: 0.091
  24. A role for casein kinase 1 epsilon in the locomotor stimulant response to methamphetamine. Psychopharmacology (Berl). 2009 May; 203(4):703-11.
    View in: PubMed
    Score: 0.068
  25. Blockade of group II, but not group I, mGluRs in the rat nucleus accumbens inhibits the expression of conditioned hyperactivity in an amphetamine-associated environment. Behav Brain Res. 2008 Aug 05; 191(1):62-6.
    View in: PubMed
    Score: 0.065
  26. Sensitization, drug addiction and psychopathology in animals and humans. Prog Neuropsychopharmacol Biol Psychiatry. 2007 Nov 15; 31(8):1553-5.
    View in: PubMed
    Score: 0.063
  27. Microinjection of CART peptide 55-102 into the nucleus accumbens blocks amphetamine-induced locomotion. Neuropeptides. 2003 Dec; 37(6):369-73.
    View in: PubMed
    Score: 0.048
  28. Previous exposure to amphetamine enhances the subsequent locomotor response to a D1 dopamine receptor agonist when glutamate reuptake is inhibited. J Neurosci. 2001 Mar 01; 21(5):RC133.
    View in: PubMed
    Score: 0.040
  29. Prenatal ethanol exposure increases risk of psychostimulant addiction. Behav Brain Res. 2019 01 01; 356:51-61.
    View in: PubMed
    Score: 0.033
  30. Explaining the escalation of drug use in substance dependence: models and appropriate animal laboratory tests. Pharmacology. 2007; 80(2-3):65-119.
    View in: PubMed
    Score: 0.015
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.