The University of Chicago Header Logo

Connection

Nanduri R. Prabhakar to Animals

This is a "connection" page, showing publications Nanduri R. Prabhakar has written about Animals.
Connection Strength

3.852
  1. Carotid body hypersensitivity in intermittent hypoxia and obtructive sleep apnoea. J Physiol. 2023 Dec; 601(24):5481-5494.
    View in: PubMed
    Score: 0.058
  2. Carotid body responses to O2 and CO2 in hypoxia-tolerant naked mole rats. Acta Physiol (Oxf). 2022 10; 236(2):e13851.
    View in: PubMed
    Score: 0.055
  3. Lysine demethylase KDM6B regulates HIF-1a-mediated systemic and cellular responses to intermittent hypoxia. Physiol Genomics. 2021 09 01; 53(9):385-394.
    View in: PubMed
    Score: 0.052
  4. Role of olfactory receptor78 in carotid body-dependent sympathetic activation and hypertension in murine models of chronic intermittent hypoxia. J Neurophysiol. 2021 06 01; 125(6):2054-2067.
    View in: PubMed
    Score: 0.051
  5. Gaseous transmitter regulation of hypoxia-evoked catecholamine secretion from murine adrenal chromaffin cells. J Neurophysiol. 2021 05 01; 125(5):1533-1542.
    View in: PubMed
    Score: 0.050
  6. Olfactory receptor 78 regulates erythropoietin and cardiorespiratory responses to hypobaric hypoxia. J Appl Physiol (1985). 2021 04 01; 130(4):1122-1132.
    View in: PubMed
    Score: 0.050
  7. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest. 2020 10 01; 130(10):5042-5051.
    View in: PubMed
    Score: 0.049
  8. Olfactory receptor 78 participates in carotid body response to a wide range of low O2 levels but not severe hypoxia. J Neurophysiol. 2020 05 01; 123(5):1886-1895.
    View in: PubMed
    Score: 0.047
  9. Long-term facilitation of catecholamine secretion from adrenal chromaffin cells of neonatal rats by chronic intermittent hypoxia. J Neurophysiol. 2019 11 01; 122(5):1874-1883.
    View in: PubMed
    Score: 0.045
  10. Recent advances in understanding the physiology of hypoxic sensing by the carotid body. F1000Res. 2018; 7.
    View in: PubMed
    Score: 0.043
  11. H2S mediates carotid body response to hypoxia but not anoxia. Respir Physiol Neurobiol. 2019 01; 259:75-85.
    View in: PubMed
    Score: 0.042
  12. Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia. Cell Tissue Res. 2018 05; 372(2):427-431.
    View in: PubMed
    Score: 0.041
  13. The role of hypoxia-inducible factors in carotid body (patho) physiology. J Physiol. 2018 08; 596(15):2977-2983.
    View in: PubMed
    Score: 0.041
  14. DNA methylation in the central and efferent limbs of the chemoreflex requires carotid body neural activity. J Physiol. 2018 08; 596(15):3087-3100.
    View in: PubMed
    Score: 0.040
  15. Measurement of Sensory Nerve Activity from the Carotid Body. Methods Mol Biol. 2018; 1742:115-124.
    View in: PubMed
    Score: 0.040
  16. Immunohistochemistry of the Carotid Body. Methods Mol Biol. 2018; 1742:155-166.
    View in: PubMed
    Score: 0.040
  17. Therapeutic Targeting of the Carotid Body for Treating Sleep Apnea in a Pre-clinical Mouse Model. Adv Exp Med Biol. 2018; 1071:109-114.
    View in: PubMed
    Score: 0.040
  18. Epigenetic changes by DNA methylation in chronic and intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol. 2017 Dec 01; 313(6):L1096-L1100.
    View in: PubMed
    Score: 0.039
  19. Complementary roles of gasotransmitters CO and H2S in sleep apnea. Proc Natl Acad Sci U S A. 2017 02 07; 114(6):1413-1418.
    View in: PubMed
    Score: 0.038
  20. Oxygen Sensing by the Carotid Body: Past and Present. Adv Exp Med Biol. 2017; 977:3-8.
    View in: PubMed
    Score: 0.038
  21. Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after long-term intermittent hypoxia. J Physiol. 2017 01 01; 595(1):63-77.
    View in: PubMed
    Score: 0.037
  22. H2S production by reactive oxygen species in the carotid body triggers hypertension in a rodent model of sleep apnea. Sci Signal. 2016 08 16; 9(441):ra80.
    View in: PubMed
    Score: 0.037
  23. Carotid body chemoreflex: a driver of autonomic abnormalities in sleep apnoea. Exp Physiol. 2016 08 01; 101(8):975-85.
    View in: PubMed
    Score: 0.037
  24. CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia. J Neurophysiol. 2016 Jan 01; 115(1):345-54.
    View in: PubMed
    Score: 0.035
  25. Oxygen Sensing and Homeostasis. Physiology (Bethesda). 2015 Sep; 30(5):340-8.
    View in: PubMed
    Score: 0.034
  26. Regulation of carotid body oxygen sensing by hypoxia-inducible factors. Pflugers Arch. 2016 Jan; 468(1):71-75.
    View in: PubMed
    Score: 0.034
  27. Neural regulation of hypoxia-inducible factors and redox state drives the pathogenesis of hypertension in a rodent model of sleep apnea. J Appl Physiol (1985). 2015 Nov 15; 119(10):1152-6.
    View in: PubMed
    Score: 0.034
  28. Protein kinase G-regulated production of H2S governs oxygen sensing. Sci Signal. 2015 Apr 21; 8(373):ra37.
    View in: PubMed
    Score: 0.033
  29. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia. Compr Physiol. 2015 Apr; 5(2):561-77.
    View in: PubMed
    Score: 0.033
  30. Hypoxia-inducible factors and hypertension: lessons from sleep apnea syndrome. J Mol Med (Berl). 2015 May; 93(5):473-80.
    View in: PubMed
    Score: 0.033
  31. HIF-1a activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase. PLoS One. 2015; 10(3):e0119762.
    View in: PubMed
    Score: 0.033
  32. Neuromolecular mechanisms mediating the effects of chronic intermittent hypoxia on adrenal medulla. Respir Physiol Neurobiol. 2015 Apr; 209:115-9.
    View in: PubMed
    Score: 0.033
  33. Epigenetic Regulation of Carotid Body Oxygen Sensing: Clinical Implications. Adv Exp Med Biol. 2015; 860:1-8.
    View in: PubMed
    Score: 0.033
  34. Carotid Body Chemoreflex Mediates Intermittent Hypoxia-Induced Oxidative Stress in the Adrenal Medulla. Adv Exp Med Biol. 2015; 860:195-9.
    View in: PubMed
    Score: 0.033
  35. CaV3.2 T-type Ca²? channels in H2S-mediated hypoxic response of the carotid body. Am J Physiol Cell Physiol. 2015 Jan 15; 308(2):C146-54.
    View in: PubMed
    Score: 0.032
  36. Regulation of hypoxia-inducible factor-a isoforms and redox state by carotid body neural activity in rats. J Physiol. 2014 Sep 01; 592(17):3841-58.
    View in: PubMed
    Score: 0.032
  37. Hypoxia-inducible factors regulate human and rat cystathionine ß-synthase gene expression. Biochem J. 2014 Mar 01; 458(2):203-11.
    View in: PubMed
    Score: 0.031
  38. Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema. Proc Natl Acad Sci U S A. 2014 Jan 21; 111(3):1174-9.
    View in: PubMed
    Score: 0.031
  39. Gasotransmitter regulation of ion channels: a key step in O2 sensing by the carotid body. Physiology (Bethesda). 2014 Jan; 29(1):49-57.
    View in: PubMed
    Score: 0.031
  40. Xanthine oxidase mediates hypoxia-inducible factor-2a degradation by intermittent hypoxia. PLoS One. 2013; 8(10):e75838.
    View in: PubMed
    Score: 0.030
  41. Role of oxidative stress-induced endothelin-converting enzyme activity in the alteration of carotid body function by chronic intermittent hypoxia. Exp Physiol. 2013 Nov; 98(11):1620-30.
    View in: PubMed
    Score: 0.030
  42. Mutual antagonism between hypoxia-inducible factors 1a and 2a regulates oxygen sensing and cardio-respiratory homeostasis. Proc Natl Acad Sci U S A. 2013 May 07; 110(19):E1788-96.
    View in: PubMed
    Score: 0.029
  43. Sensing hypoxia: physiology, genetics and epigenetics. J Physiol. 2013 May 01; 591(9):2245-57.
    View in: PubMed
    Score: 0.029
  44. Developmental programming of O(2) sensing by neonatal intermittent hypoxia via epigenetic mechanisms. Respir Physiol Neurobiol. 2013 Jan 01; 185(1):105-9.
    View in: PubMed
    Score: 0.028
  45. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 2012 Jul; 92(3):967-1003.
    View in: PubMed
    Score: 0.028
  46. Endogenous H2S is required for hypoxic sensing by carotid body glomus cells. Am J Physiol Cell Physiol. 2012 Nov 01; 303(9):C916-23.
    View in: PubMed
    Score: 0.028
  47. Sympatho-adrenal activation by chronic intermittent hypoxia. J Appl Physiol (1985). 2012 Oct 15; 113(8):1304-10.
    View in: PubMed
    Score: 0.027
  48. Carbon monoxide (CO) and hydrogen sulfide (H(2)S) in hypoxic sensing by the carotid body. Respir Physiol Neurobiol. 2012 Nov 15; 184(2):165-9.
    View in: PubMed
    Score: 0.027
  49. Gas biology: small molecular medicine. J Mol Med (Berl). 2012 Mar; 90(3):213-5.
    View in: PubMed
    Score: 0.027
  50. Gaseous messengers in oxygen sensing. J Mol Med (Berl). 2012 Mar; 90(3):265-72.
    View in: PubMed
    Score: 0.027
  51. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proc Natl Acad Sci U S A. 2012 Feb 14; 109(7):2515-20.
    View in: PubMed
    Score: 0.027
  52. The role of hypoxia-inducible factors in oxygen sensing by the carotid body. Adv Exp Med Biol. 2012; 758:1-5.
    View in: PubMed
    Score: 0.027
  53. Hydrogen sulfide (H(2)S): a physiologic mediator of carotid body response to hypoxia. Adv Exp Med Biol. 2012; 758:109-13.
    View in: PubMed
    Score: 0.027
  54. Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J Cell Physiol. 2011 Nov; 226(11):2925-33.
    View in: PubMed
    Score: 0.026
  55. Endothelin-1 mediates attenuated carotid baroreceptor activity by intermittent hypoxia. J Appl Physiol (1985). 2012 Jan; 112(1):187-96.
    View in: PubMed
    Score: 0.026
  56. Angiotensin II evokes sensory long-term facilitation of the carotid body via NADPH oxidase. J Appl Physiol (1985). 2011 Oct; 111(4):964-70.
    View in: PubMed
    Score: 0.026
  57. Sensory plasticity of the carotid body: role of reactive oxygen species and physiological significance. Respir Physiol Neurobiol. 2011 Sep 30; 178(3):375-80.
    View in: PubMed
    Score: 0.025
  58. Hypoxia-inducible factor 2a (HIF-2a) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proc Natl Acad Sci U S A. 2011 Feb 15; 108(7):3065-70.
    View in: PubMed
    Score: 0.025
  59. NADPH oxidase 2 mediates intermittent hypoxia-induced mitochondrial complex I inhibition: relevance to blood pressure changes in rats. Antioxid Redox Signal. 2011 Feb 15; 14(4):533-42.
    View in: PubMed
    Score: 0.024
  60. Intermittent hypoxia augments acute hypoxic sensing via HIF-mediated ROS. Respir Physiol Neurobiol. 2010 Dec 31; 174(3):230-4.
    View in: PubMed
    Score: 0.024
  61. Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respir Physiol Neurobiol. 2010 Nov 30; 174(1-2):156-61.
    View in: PubMed
    Score: 0.024
  62. NADPH oxidase-dependent regulation of T-type Ca2+ channels and ryanodine receptors mediate the augmented exocytosis of catecholamines from intermittent hypoxia-treated neonatal rat chromaffin cells. J Neurosci. 2010 Aug 11; 30(32):10763-72.
    View in: PubMed
    Score: 0.024
  63. Neonatal intermittent hypoxia impairs neuronal nicotinic receptor expression and function in adrenal chromaffin cells. Am J Physiol Cell Physiol. 2010 Aug; 299(2):C381-8.
    View in: PubMed
    Score: 0.024
  64. H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci U S A. 2010 Jun 08; 107(23):10719-24.
    View in: PubMed
    Score: 0.024
  65. Intermittent hypoxia-mediated plasticity of acute O2 sensing requires altered red-ox regulation by HIF-1 and HIF-2. Ann N Y Acad Sci. 2009 Oct; 1177:162-8.
    View in: PubMed
    Score: 0.023
  66. Refinement of telemetry for measuring blood pressure in conscious rats. J Am Assoc Lab Anim Sci. 2009 May; 48(3):268-71.
    View in: PubMed
    Score: 0.022
  67. NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J Neurosci. 2009 Apr 15; 29(15):4903-10.
    View in: PubMed
    Score: 0.022
  68. Neonatal intermittent hypoxia leads to long-lasting facilitation of acute hypoxia-evoked catecholamine secretion from rat chromaffin cells. J Neurophysiol. 2009 Jun; 101(6):2837-46.
    View in: PubMed
    Score: 0.022
  69. Intermittent hypoxia degrades HIF-2alpha via calpains resulting in oxidative stress: implications for recurrent apnea-induced morbidities. Proc Natl Acad Sci U S A. 2009 Jan 27; 106(4):1199-204.
    View in: PubMed
    Score: 0.022
  70. Long-term regulation of carotid body function: acclimatization and adaptation--invited article. Adv Exp Med Biol. 2009; 648:307-17.
    View in: PubMed
    Score: 0.022
  71. Contrasting effects of intermittent and continuous hypoxia on low O(2) evoked catecholamine secretion from neonatal rat chromaffin cells. Adv Exp Med Biol. 2009; 648:345-9.
    View in: PubMed
    Score: 0.022
  72. Reactive oxygen species-dependent endothelin signaling is required for augmented hypoxic sensory response of the neonatal carotid body by intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol. 2009 Mar; 296(3):R735-42.
    View in: PubMed
    Score: 0.022
  73. Post-translational modification of proteins during intermittent hypoxia. Respir Physiol Neurobiol. 2008 Dec 10; 164(1-2):272-6.
    View in: PubMed
    Score: 0.022
  74. Transcriptional responses to intermittent hypoxia. Respir Physiol Neurobiol. 2008 Dec 10; 164(1-2):277-81.
    View in: PubMed
    Score: 0.022
  75. Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol. 2008 Dec; 217(3):674-85.
    View in: PubMed
    Score: 0.021
  76. Significance of pulmonary vagal afferents for respiratory muscle activity in the cat. J Physiol Pharmacol. 2008 Dec; 59 Suppl 6:407-20.
    View in: PubMed
    Score: 0.021
  77. Comparative analysis of neonatal and adult rat carotid body responses to chronic intermittent hypoxia. J Appl Physiol (1985). 2008 May; 104(5):1287-94.
    View in: PubMed
    Score: 0.020
  78. Sensing hypoxia: carotid body mechanisms and reflexes in health and disease. Respir Physiol Neurobiol. 2007 Jul 01; 157(1):1-3.
    View in: PubMed
    Score: 0.019
  79. Altered carotid body function by intermittent hypoxia in neonates and adults: relevance to recurrent apneas. Respir Physiol Neurobiol. 2007 Jul 01; 157(1):148-53.
    View in: PubMed
    Score: 0.019
  80. Novel role for reactive oxygen species as amplifiers of intermittent hypoxia. Focus on "Reactive oxygen species mediate central cardiorespiratory network responses to acute intermittent hypoxia". J Neurophysiol. 2007 Mar; 97(3):1877.
    View in: PubMed
    Score: 0.019
  81. Acute intermittent hypoxia increases both phrenic and sympathetic nerve activities in the rat. Exp Physiol. 2007 Jan; 92(1):87-97.
    View in: PubMed
    Score: 0.019
  82. Systemic, cellular and molecular analysis of chemoreflex-mediated sympathoexcitation by chronic intermittent hypoxia. Exp Physiol. 2007 Jan; 92(1):39-44.
    View in: PubMed
    Score: 0.019
  83. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol. 2006 Dec 01; 577(Pt 2):705-16.
    View in: PubMed
    Score: 0.018
  84. 5-HT evokes sensory long-term facilitation of rodent carotid body via activation of NADPH oxidase. J Physiol. 2006 Oct 01; 576(Pt 1):289-95.
    View in: PubMed
    Score: 0.018
  85. Acute lung injury augments hypoxic ventilatory response in the absence of systemic hypoxemia. J Appl Physiol (1985). 2006 Dec; 101(6):1795-802.
    View in: PubMed
    Score: 0.018
  86. Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress. J Physiol. 2006 Aug 15; 575(Pt 1):229-39.
    View in: PubMed
    Score: 0.018
  87. Regulation of gene expression by HIF-1. Novartis Found Symp. 2006; 272:2-8; discussion 8-14, 33-6.
    View in: PubMed
    Score: 0.018
  88. Reactive oxygen species facilitate oxygen sensing. Novartis Found Symp. 2006; 272:95-9; discussion 100-5, 131-40.
    View in: PubMed
    Score: 0.018
  89. O2 sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters? Exp Physiol. 2006 Jan; 91(1):17-23.
    View in: PubMed
    Score: 0.017
  90. Oxygen sensing in the body. Prog Biophys Mol Biol. 2006 Jul; 91(3):249-86.
    View in: PubMed
    Score: 0.017
  91. Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin Exp Pharmacol Physiol. 2005 May-Jun; 32(5-6):447-9.
    View in: PubMed
    Score: 0.017
  92. Modulation of the hypoxic sensory response of the carotid body by 5-hydroxytryptamine: role of the 5-HT2 receptor. Respir Physiol Neurobiol. 2005 Feb 15; 145(2-3):135-42.
    View in: PubMed
    Score: 0.017
  93. Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B. Respir Physiol Neurobiol. 2005 Jan 15; 145(1):23-31.
    View in: PubMed
    Score: 0.016
  94. Cellular and molecular mechanisms associated with carotid body adaptations to chronic hypoxia. High Alt Med Biol. 2005; 6(2):112-20.
    View in: PubMed
    Score: 0.016
  95. Ca2+/calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J Biol Chem. 2005 Feb 11; 280(6):4321-8.
    View in: PubMed
    Score: 0.016
  96. Intermittent hypoxia augments carotid body and ventilatory response to hypoxia in neonatal rat pups. J Appl Physiol (1985). 2004 Nov; 97(5):2020-5.
    View in: PubMed
    Score: 0.016
  97. Role of oxidative stress in intermittent hypoxia-induced immediate early gene activation in rat PC12 cells. J Physiol. 2004 Jun 15; 557(Pt 3):773-83.
    View in: PubMed
    Score: 0.016
  98. Entrainment pattern between sympathetic and phrenic nerve activities in the Sprague-Dawley rat: hypoxia-evoked sympathetic activity during expiration. Am J Physiol Regul Integr Comp Physiol. 2004 Jun; 286(6):R1121-8.
    View in: PubMed
    Score: 0.015
  99. Oxidative stress in the systemic and cellular responses to intermittent hypoxia. Biol Chem. 2004 Mar-Apr; 385(3-4):217-21.
    View in: PubMed
    Score: 0.015
  100. Transcriptomic Analysis of Postnatal Rat Carotid Body Development. Genes (Basel). 2024 Feb 27; 15(3).
    View in: PubMed
    Score: 0.015
  101. P300/CBP Regulates HIF-1-Dependent Sympathetic Activation and Hypertension by Intermittent Hypoxia. Am J Respir Cell Mol Biol. 2024 Feb; 70(2):110-118.
    View in: PubMed
    Score: 0.015
  102. Detection of oxygen sensing during intermittent hypoxia. Methods Enzymol. 2004; 381:107-20.
    View in: PubMed
    Score: 0.015
  103. Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity. J Appl Physiol (1985). 2004 Mar; 96(3):1236-42; discussion 1196.
    View in: PubMed
    Score: 0.015
  104. Regulation of breathing by tissue oxygen: evidence from mutant mice with Presbyterian hemoglobinopathy. Am J Physiol Regul Integr Comp Physiol. 2003 Oct; 285(4):R724.
    View in: PubMed
    Score: 0.015
  105. Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci U S A. 2003 Aug 19; 100(17):10073-8.
    View in: PubMed
    Score: 0.015
  106. Tachykinins in the control of breathing by hypoxia: pre- and post-genomic era. Respir Physiol Neurobiol. 2003 May 30; 135(2-3):145-54.
    View in: PubMed
    Score: 0.015
  107. Activation of tyrosine hydroxylase by intermittent hypoxia: involvement of serine phosphorylation. J Appl Physiol (1985). 2003 Aug; 95(2):536-44.
    View in: PubMed
    Score: 0.015
  108. Gasotransmitter modulation of hypoglossal motoneuron activity. Elife. 2023 01 19; 12.
    View in: PubMed
    Score: 0.014
  109. Reactive oxygen species in the plasticity of respiratory behavior elicited by chronic intermittent hypoxia. J Appl Physiol (1985). 2003 Jun; 94(6):2342-9.
    View in: PubMed
    Score: 0.014
  110. Systemic and cellular responses to intermittent hypoxia: evidence for oxidative stress and mitochondrial dysfunction. Adv Exp Med Biol. 2003; 536:559-64.
    View in: PubMed
    Score: 0.014
  111. CO(2) and pH independently modulate L-type Ca(2+) current in rabbit carotid body glomus cells. J Neurophysiol. 2002 Aug; 88(2):604-12.
    View in: PubMed
    Score: 0.014
  112. Protein phosphatase 1 regulates reactive oxygen species-dependent degradation of histone deacetylase 5 by intermittent hypoxia. Am J Physiol Cell Physiol. 2022 08 01; 323(2):C423-C431.
    View in: PubMed
    Score: 0.014
  113. Sleep apneas: an oxidative stress? Am J Respir Crit Care Med. 2002 Apr 01; 165(7):859-60.
    View in: PubMed
    Score: 0.014
  114. Mutant mice deficient in NOS-1 exhibit attenuated long-term facilitation and short-term potentiation in breathing. J Physiol. 2002 Feb 15; 539(Pt 1):309-15.
    View in: PubMed
    Score: 0.013
  115. Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci U S A. 2002 Jan 22; 99(2):821-6.
    View in: PubMed
    Score: 0.013
  116. Ventilatory changes during intermittent hypoxia: importance of pattern and duration. High Alt Med Biol. 2002; 3(2):195-204.
    View in: PubMed
    Score: 0.013
  117. Intermittent hypoxia: cell to system. Am J Physiol Lung Cell Mol Physiol. 2001 Sep; 281(3):L524-8.
    View in: PubMed
    Score: 0.013
  118. Selected Contribution: Improved anoxic tolerance in rat diaphragm following intermittent hypoxia. J Appl Physiol (1985). 2001 Jun; 90(6):2508-13.
    View in: PubMed
    Score: 0.013
  119. Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. J Appl Physiol (1985). 2001 May; 90(5):1986-94.
    View in: PubMed
    Score: 0.013
  120. Role of nitric oxide in short-term potentiation and long-term facilitation: involvement of NO in breathing stability. Adv Exp Med Biol. 2001; 499:215-9.
    View in: PubMed
    Score: 0.012
  121. Gene regulation during intermittent hypoxia: evidence for the involvement of reactive oxygen species. Adv Exp Med Biol. 2001; 499:297-302.
    View in: PubMed
    Score: 0.012
  122. Chronic intermittent hypoxia enhances carotid body chemoreceptor response to low oxygen. Adv Exp Med Biol. 2001; 499:33-8.
    View in: PubMed
    Score: 0.012
  123. CO2/HCO3- modulates K+ and Ca2+ currents in glomus cells of the carotid body. Adv Exp Med Biol. 2001; 499:61-6.
    View in: PubMed
    Score: 0.012
  124. Peripheral and central chemosensitivity: multiple mechanisms, multiple sites? A workshop summary. Adv Exp Med Biol. 2001; 499:73-80.
    View in: PubMed
    Score: 0.012
  125. Hypoxia-inducible factor-1 mediates pancreatic ß-cell dysfunction by intermittent hypoxia. Am J Physiol Cell Physiol. 2020 11 01; 319(5):C922-C932.
    View in: PubMed
    Score: 0.012
  126. Cellular mechanisms of oxygen sensing at the carotid body: heme proteins and ion channels. Respir Physiol. 2000 Sep; 122(2-3):209-21.
    View in: PubMed
    Score: 0.012
  127. Augmentation of L-type calcium current by hypoxia in rabbit carotid body glomus cells: evidence for a PKC-sensitive pathway. J Neurophysiol. 2000 Sep; 84(3):1636-44.
    View in: PubMed
    Score: 0.012
  128. Oxygen sensing by the carotid body chemoreceptors. J Appl Physiol (1985). 2000 Jun; 88(6):2287-95.
    View in: PubMed
    Score: 0.012
  129. L-type Ca(2+) channel activation regulates induction of c-fos transcription by hypoxia. J Appl Physiol (1985). 2000 May; 88(5):1898-906.
    View in: PubMed
    Score: 0.012
  130. Blunted respiratory responses to hypoxia in mutant mice deficient in nitric oxide synthase-3. J Appl Physiol (1985). 2000 Apr; 88(4):1496-508.
    View in: PubMed
    Score: 0.012
  131. HERG-Like potassium current regulates the resting membrane potential in glomus cells of the rabbit carotid body. J Neurophysiol. 2000 Mar; 83(3):1150-7.
    View in: PubMed
    Score: 0.012
  132. Involvement of substance P in neutral endopeptidase modulation of carotid body sensory responses to hypoxia. J Appl Physiol (1985). 2000 Jan; 88(1):195-202.
    View in: PubMed
    Score: 0.012
  133. Intracellular pathways linking hypoxia to activation of c-fos and AP-1. Adv Exp Med Biol. 2000; 475:101-9.
    View in: PubMed
    Score: 0.012
  134. Chemosensing at the carotid body. Involvement of a HERG-like potassium current in glomus cells. Adv Exp Med Biol. 2000; 475:241-8.
    View in: PubMed
    Score: 0.012
  135. Dual influence of nitric oxide on gene regulation during hypoxia. Adv Exp Med Biol. 2000; 475:285-92.
    View in: PubMed
    Score: 0.012
  136. Peripheral chemosensitivity in mutant mice deficient in nitric oxide synthase. Adv Exp Med Biol. 2000; 475:571-9.
    View in: PubMed
    Score: 0.012
  137. Augmentation of calcium current by hypoxia in carotid body glomus cells. Adv Exp Med Biol. 2000; 475:589-99.
    View in: PubMed
    Score: 0.012
  138. Role of substance P in neutral endopeptidase modulation of hypoxic response of the carotid body. Adv Exp Med Biol. 2000; 475:705-13.
    View in: PubMed
    Score: 0.012
  139. Nitric oxide inhibits L-type Ca2+ current in glomus cells of the rabbit carotid body via a cGMP-independent mechanism. J Neurophysiol. 1999 Apr; 81(4):1449-57.
    View in: PubMed
    Score: 0.011
  140. NO and CO as second messengers in oxygen sensing in the carotid body. Respir Physiol. 1999 Apr 01; 115(2):161-8.
    View in: PubMed
    Score: 0.011
  141. Norepinephrine inhibits a toxin resistant Ca2+ current in carotid body glomus cells: evidence for a direct G protein mechanism. J Neurophysiol. 1999 Jan; 81(1):225-33.
    View in: PubMed
    Score: 0.011
  142. Altered respiratory responses to hypoxia in mutant mice deficient in neuronal nitric oxide synthase. J Physiol. 1998 Aug 15; 511 ( Pt 1):273-87.
    View in: PubMed
    Score: 0.011
  143. Role of c-fos in hypoxia-induced AP-1 cis-element activity and tyrosine hydroxylase gene expression. Brain Res Mol Brain Res. 1998 Aug 15; 59(1):74-83.
    View in: PubMed
    Score: 0.011
  144. Release of dopamine and norepinephrine by hypoxia from PC-12 cells. Am J Physiol. 1998 06; 274(6):C1592-600.
    View in: PubMed
    Score: 0.010
  145. Carotid body I1-imidazoline receptors: binding, visualization and modulatory function. Respir Physiol. 1998 Jun; 112(3):239-51.
    View in: PubMed
    Score: 0.010
  146. Ca2+ current in rabbit carotid body glomus cells is conducted by multiple types of high-voltage-activated Ca2+ channels. J Neurophysiol. 1997 Nov; 78(5):2467-74.
    View in: PubMed
    Score: 0.010
  147. HIF-1a is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium. Elife. 2017 05 30; 6.
    View in: PubMed
    Score: 0.010
  148. Cellular mechanisms associated with intermittent hypoxia. Essays Biochem. 2007; 43:91-104.
    View in: PubMed
    Score: 0.009
  149. Activation of nitric oxide synthase gene expression by hypoxia in central and peripheral neurons. Brain Res Mol Brain Res. 1996 Dec 31; 43(1-2):341-6.
    View in: PubMed
    Score: 0.009
  150. Heterogeneity in cytosolic calcium responses to hypoxia in carotid body cells. Brain Res. 1996 Jan 15; 706(2):297-302.
    View in: PubMed
    Score: 0.009
  151. Induction of immediate early response genes by hypoxia. Possible molecular bases for systems adaptation to low pO2. Adv Exp Med Biol. 1996; 410:127-34.
    View in: PubMed
    Score: 0.009
  152. Carbon monoxide and carotid body chemoreception. Adv Exp Med Biol. 1996; 410:341-4.
    View in: PubMed
    Score: 0.009
  153. Regulation of neuronal nitric oxide synthase gene expression by hypoxia. Role of nitric oxide in respiratory adaptation to low pO2. Adv Exp Med Biol. 1996; 410:345-8.
    View in: PubMed
    Score: 0.009
  154. Calpain activation by ROS mediates human ether-a-go-go-related gene protein degradation by intermittent hypoxia. Am J Physiol Cell Physiol. 2016 Mar 01; 310(5):C329-36.
    View in: PubMed
    Score: 0.009
  155. Cell selective induction and transcriptional activation of immediate early genes by hypoxia. Brain Res. 1995 Oct 30; 697(1-2):266-70.
    View in: PubMed
    Score: 0.009
  156. G proteins in carotid body chemoreception. Biol Signals. 1995 Sep-Oct; 4(5):271-6.
    View in: PubMed
    Score: 0.009
  157. Analysis of carotid chemoreceptor responses to substance P analogue in anaesthetized cats. J Auton Nerv Syst. 1995 Mar 18; 52(1):43-50.
    View in: PubMed
    Score: 0.008
  158. Carbon monoxide: a role in carotid body chemoreception. Proc Natl Acad Sci U S A. 1995 Mar 14; 92(6):1994-7.
    View in: PubMed
    Score: 0.008
  159. Gases as chemical messengers in the carotid body. Role of nitric oxide and carbon monoxide in chemoreception. Adv Exp Med Biol. 1995; 393:309-12.
    View in: PubMed
    Score: 0.008
  160. Tachykinin antagonists in carotid body responses to hypoxia and substance P in the rat. Respir Physiol. 1994 Mar; 95(3):295-310.
    View in: PubMed
    Score: 0.008
  161. Neurotransmitters in the carotid body. Adv Exp Med Biol. 1994; 360:57-69.
    View in: PubMed
    Score: 0.008
  162. Inhibitory sympathetic action on the carotid body responses to sustained hypoxia. Respir Physiol. 1994 Jan; 95(1):67-79.
    View in: PubMed
    Score: 0.008
  163. Selective inhibition of the carotid body sensory response to hypoxia by the substance P receptor antagonist CP-96,345. Proc Natl Acad Sci U S A. 1993 Nov 01; 90(21):10041-5.
    View in: PubMed
    Score: 0.008
  164. Nitric oxide in the sensory function of the carotid body. Brain Res. 1993 Oct 15; 625(1):16-22.
    View in: PubMed
    Score: 0.008
  165. Selective blockade of sensory response of the carotid body to hypoxia by NK-1 receptor antagonist CP-96,345. Regul Pept. 1993 Jul 02; 46(1-2):266-8.
    View in: PubMed
    Score: 0.007
  166. Impairment of pancreatic ß-cell function by chronic intermittent hypoxia. Exp Physiol. 2013 Sep; 98(9):1376-85.
    View in: PubMed
    Score: 0.007
  167. Role of substance P in rat carotid body responses to hypoxia and capsaicin. Adv Exp Med Biol. 1993; 337:265-70.
    View in: PubMed
    Score: 0.007
  168. Effect of arterial chemoreceptor stimulation: role of norepinephrine in hypoxic chemotransmission. Adv Exp Med Biol. 1993; 337:301-6.
    View in: PubMed
    Score: 0.007
  169. NADPH oxidase-derived H(2)O(2) contributes to angiotensin II-induced aldosterone synthesis in human and rat adrenal cortical cells. Antioxid Redox Signal. 2012 Aug 01; 17(3):445-59.
    View in: PubMed
    Score: 0.007
  170. Differential regulation of tyrosine hydroxylase by continuous and intermittent hypoxia. Adv Exp Med Biol. 2012; 758:381-5.
    View in: PubMed
    Score: 0.007
  171. Particulate matter induces cardiac arrhythmias via dysregulation of carotid body sensitivity and cardiac sodium channels. Am J Respir Cell Mol Biol. 2012 Apr; 46(4):524-31.
    View in: PubMed
    Score: 0.007
  172. Hydrogen peroxide differentially affects activity in the pre-Bötzinger complex and hippocampus. J Neurophysiol. 2011 Dec; 106(6):3045-55.
    View in: PubMed
    Score: 0.006
  173. Role of alpha 2-adrenergic receptors in the carotid body response to isocapnic hypoxia. Respir Physiol. 1991 Mar; 83(3):353-64.
    View in: PubMed
    Score: 0.006
  174. Enhanced neuropeptide Y synthesis during intermittent hypoxia in the rat adrenal medulla: role of reactive oxygen species-dependent alterations in precursor peptide processing. Antioxid Redox Signal. 2011 Apr 01; 14(7):1179-90.
    View in: PubMed
    Score: 0.006
  175. Functional role of substance P for respiratory control during development. Ann N Y Acad Sci. 1991; 632:48-52.
    View in: PubMed
    Score: 0.006
  176. Chemoreceptor responses to substance P, physalaemin and eledoisin: evidence for neurokinin-1 receptors in the cat carotid body. Neurosci Lett. 1990 Dec 11; 120(2):183-6.
    View in: PubMed
    Score: 0.006
  177. Post-translational modification of glutamic acid decarboxylase 67 by intermittent hypoxia: evidence for the involvement of dopamine D1 receptor signaling. J Neurochem. 2010 Dec; 115(6):1568-78.
    View in: PubMed
    Score: 0.006
  178. Occurrence of neutral endopeptidase activity in the cat carotid body and its significance in chemoreception. Brain Res. 1990 May 28; 517(1-2):341-3.
    View in: PubMed
    Score: 0.006
  179. Effect of adenosine on isolated and superfused cat carotid body activity. Neurosci Lett. 1990 May 18; 113(1):111-4.
    View in: PubMed
    Score: 0.006
  180. Effect of adenosine on chemosensory activity of the cat aortic body. Respir Physiol. 1990 May-Jun; 80(2-3):299-306.
    View in: PubMed
    Score: 0.006
  181. Substance P and mitochondrial oxygen consumption: evidence for a direct intracellular role for the peptide. Peptides. 1989 Sep-Oct; 10(5):1003-6.
    View in: PubMed
    Score: 0.006
  182. Pattern-specific sustained activation of tyrosine hydroxylase by intermittent hypoxia: role of reactive oxygen species-dependent downregulation of protein phosphatase 2A and upregulation of protein kinases. Antioxid Redox Signal. 2009 Aug; 11(8):1777-89.
    View in: PubMed
    Score: 0.006
  183. Substance P and neurokinin A in the cat carotid body: localization, exogenous effects and changes in content in response to arterial pO2. Brain Res. 1989 Mar 06; 481(2):205-14.
    View in: PubMed
    Score: 0.005
  184. Involvement of ventral medullary surface in respiratory responses induced by 2,4-dinitrophenol. J Appl Physiol (1985). 1989 Feb; 66(2):598-605.
    View in: PubMed
    Score: 0.005
  185. Intermittent hypoxia activates peptidylglycine alpha-amidating monooxygenase in rat brain stem via reactive oxygen species-mediated proteolytic processing. J Appl Physiol (1985). 2009 Jan; 106(1):12-9.
    View in: PubMed
    Score: 0.005
  186. Influence of adrenaline and hypoxia on rat muscle receptors in vitro. Prog Brain Res. 1988; 74:91-7.
    View in: PubMed
    Score: 0.005
  187. Role of substance P in hypercapnic excitation of carotid chemoreceptors. J Appl Physiol (1985). 1987 Dec; 63(6):2418-25.
    View in: PubMed
    Score: 0.005
  188. Pronounced depression by propofol on carotid body response to CO2 and K+-induced carotid body activation. Respir Physiol Neurobiol. 2008 Feb 29; 160(3):284-8.
    View in: PubMed
    Score: 0.005
  189. Role of the vagal afferents in substance P-induced respiratory responses in anaesthetized rabbits. Acta Physiol Scand. 1987 Sep; 131(1):63-71.
    View in: PubMed
    Score: 0.005
  190. Increased secretory capacity of mouse adrenal chromaffin cells by chronic intermittent hypoxia: involvement of protein kinase C. J Physiol. 2007 Oct 01; 584(Pt 1):313-9.
    View in: PubMed
    Score: 0.005
  191. Analysis of postinspiratory activity of phrenic motoneurons with chemical and vagal reflexes. J Appl Physiol (1985). 1986 Oct; 61(4):1499-509.
    View in: PubMed
    Score: 0.005
  192. Effect of focal cooling of central chemosensitive areas on cerebral ischemic response. Am J Physiol. 1986 Aug; 251(2 Pt 2):R295-302.
    View in: PubMed
    Score: 0.005
  193. Spinal termination of nociceptive afferent fibres from deep tissues in the cat. Neurosci Lett. 1986 May 15; 66(2):169-74.
    View in: PubMed
    Score: 0.005
  194. Secretion of brain-derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling. J Neurochem. 2006 Feb; 96(3):694-705.
    View in: PubMed
    Score: 0.004
  195. Altered breathing pattern elicited by stimulation of abdominal visceral afferents. J Appl Physiol (1985). 1985 Jun; 58(6):1755-60.
    View in: PubMed
    Score: 0.004
  196. Electrical stimulation of arterial and central chemosensory afferents at different times in the respiratory cycle of the cat: II. Responses of respiratory muscles and their motor nerves. Pflugers Arch. 1985 Apr; 403(4):422-8.
    View in: PubMed
    Score: 0.004
  197. Kv1.1 deletion augments the afferent hypoxic chemosensory pathway and respiration. J Neurosci. 2005 Mar 30; 25(13):3389-99.
    View in: PubMed
    Score: 0.004
  198. Effect of substance P antagonist on the hypoxia-induced carotid chemoreceptor activity. Acta Physiol Scand. 1984 Jul; 121(3):301-3.
    View in: PubMed
    Score: 0.004
  199. Attenuated outward potassium currents in carotid body glomus cells of heart failure rabbit: involvement of nitric oxide. J Physiol. 2004 Feb 15; 555(Pt 1):219-29.
    View in: PubMed
    Score: 0.004
  200. Facilitation of dopamine and acetylcholine release by intermittent hypoxia in PC12 cells: involvement of calcium and reactive oxygen species. J Appl Physiol (1985). 2004 Mar; 96(3):1206-15; discussion 1196.
    View in: PubMed
    Score: 0.004
  201. Acetylcholine release from the carotid body by hypoxia: evidence for the involvement of autoinhibitory receptors. J Appl Physiol (1985). 2004 Jan; 96(1):376-83.
    View in: PubMed
    Score: 0.004
  202. Hypoxia does not uniformly facilitate the release of multiple transmitters from the carotid body. Adv Exp Med Biol. 2003; 536:291-6.
    View in: PubMed
    Score: 0.004
  203. The essential role of Cited2, a negative regulator for HIF-1alpha, in heart development and neurulation. Proc Natl Acad Sci U S A. 2002 Aug 06; 99(16):10488-93.
    View in: PubMed
    Score: 0.003
  204. Release of substance P by low oxygen in the rabbit carotid body: evidence for the involvement of calcium channels. Brain Res. 2001 Feb 23; 892(2):359-69.
    View in: PubMed
    Score: 0.003
  205. Neurotransmitter release from the rabbit carotid body: differential effects of hypoxia on substance P and acetylcholine release. Adv Exp Med Biol. 2001; 499:39-43.
    View in: PubMed
    Score: 0.003
  206. Nitric oxide synthase activity in guinea pig ventricular myocytes is not involved in muscarinic inhibition of cAMP-regulated ion channels. Circ Res. 1996 May; 78(5):925-35.
    View in: PubMed
    Score: 0.002
  207. Nitric oxide and ventilatory response to hypoxia. Respir Physiol. 1995 Sep; 101(3):257-66.
    View in: PubMed
    Score: 0.002
  208. Possible genomic mechanism involved in control systems responses to hypoxia. Adv Exp Med Biol. 1995; 393:89-94.
    View in: PubMed
    Score: 0.002
  209. Low PO2 dependency of neutral endopeptidase and acetylcholinesterase activities of the rat carotid body. Adv Exp Med Biol. 1994; 360:217-20.
    View in: PubMed
    Score: 0.002
  210. Effect of distension of urinary bladder on blood pressure and respiration. Indian J Physiol Pharmacol. 1973 Oct-Dec; 17(4):370-5.
    View in: PubMed
    Score: 0.002
  211. Cardiorespiratory changes induced by vertebral artery injection of sodium cyanide in cats. Respir Physiol. 1992 Jan; 87(1):49-61.
    View in: PubMed
    Score: 0.002
  212. Respiratory effects of N-methyl-D-aspartate on the ventrolateral medullary surface. J Appl Physiol (1985). 1989 Nov; 67(5):1814-9.
    View in: PubMed
    Score: 0.001
  213. Role of adenosine in hypoxic ventilatory depression. J Appl Physiol (1985). 1989 Aug; 67(2):541-6.
    View in: PubMed
    Score: 0.001
  214. Integration of cardiorespiratory responses in the ventrolateral medulla. Prog Brain Res. 1989; 81:215-20.
    View in: PubMed
    Score: 0.001
  215. Somatostatin in the control of respiration. Acta Physiol Scand. 1988 Dec; 134(4):529-33.
    View in: PubMed
    Score: 0.001
  216. Naloxone enhances the response to hypercapnia of spinal and cranial respiratory nerves. Respir Physiol. 1988 Dec; 74(3):299-309.
    View in: PubMed
    Score: 0.001
  217. Respiratory and vasomotor responses to focal cooling of the ventral medullary surface (VMS) of the rat. Respir Physiol. 1988 Oct; 74(1):35-47.
    View in: PubMed
    Score: 0.001
  218. Inhibition of expiratory muscle EMG and motor unit activity during augmented breaths in cats. Respir Physiol. 1988 Jun; 72(3):303-14.
    View in: PubMed
    Score: 0.001
  219. Respiratory and vasomotor influences of the ventrolateral medulla. Clin Exp Hypertens A. 1988; 10 Suppl 1:1-9.
    View in: PubMed
    Score: 0.001
  220. Ventral medullary surface inputs to cervical sympathetic respiratory oscillations. Am J Physiol. 1987 Jun; 252(6 Pt 2):R1032-8.
    View in: PubMed
    Score: 0.001
  221. Respiratory and vasomotor effects of excitatory amino acid on ventral medullary surface. Brain Res Bull. 1987 May; 18(5):681-4.
    View in: PubMed
    Score: 0.001
  222. Comparison of the effects of hypercapnia on phrenic and hypoglossal activity in anesthetized decerebrate and decorticate animals. Brain Res Bull. 1986 Aug; 17(2):181-7.
    View in: PubMed
    Score: 0.001
  223. Responses of hypoglossal and phrenic nerves to decreased respiratory drive in cats. Respiration. 1986; 50(2):130-8.
    View in: PubMed
    Score: 0.001
  224. Influence of central chemoreceptor afferent inputs on respiratory muscle activity. Am J Physiol. 1985 Aug; 249(2 Pt 2):R266-73.
    View in: PubMed
    Score: 0.001
  225. The effects of hypercapnia and cooling the ventral medullary surface on capsaicin induced respiratory reflexes. Respir Physiol. 1985 Jun; 60(3):377-85.
    View in: PubMed
    Score: 0.001
  226. Electrical stimulation of arterial and central chemosensory afferents at different times in the respiratory cycle of the cat: I. Ventilatory responses. Pflugers Arch. 1985 Apr; 403(4):415-21.
    View in: PubMed
    Score: 0.001
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.