The University of Chicago Header Logo

Connection

Nanduri R. Prabhakar to Hypoxia

This is a "connection" page, showing publications Nanduri R. Prabhakar has written about Hypoxia.
Connection Strength

26.774
  1. Adaptive cardiorespiratory changes to chronic continuous and intermittent hypoxia. Handb Clin Neurol. 2022; 188:103-123.
    View in: PubMed
    Score: 0.570
  2. Lysine demethylase KDM6B regulates HIF-1a-mediated systemic and cellular responses to intermittent hypoxia. Physiol Genomics. 2021 09 01; 53(9):385-394.
    View in: PubMed
    Score: 0.552
  3. Role of olfactory receptor78 in carotid body-dependent sympathetic activation and hypertension in murine models of chronic intermittent hypoxia. J Neurophysiol. 2021 06 01; 125(6):2054-2067.
    View in: PubMed
    Score: 0.544
  4. Gaseous transmitter regulation of hypoxia-evoked catecholamine secretion from murine adrenal chromaffin cells. J Neurophysiol. 2021 05 01; 125(5):1533-1542.
    View in: PubMed
    Score: 0.539
  5. Olfactory receptor 78 participates in carotid body response to a wide range of low O2 levels but not severe hypoxia. J Neurophysiol. 2020 05 01; 123(5):1886-1895.
    View in: PubMed
    Score: 0.504
  6. 2019 Nobel Prize in Physiology or Medicine. Physiology (Bethesda). 2020 03 01; 35(2):81-83.
    View in: PubMed
    Score: 0.502
  7. Long-term facilitation of catecholamine secretion from adrenal chromaffin cells of neonatal rats by chronic intermittent hypoxia. J Neurophysiol. 2019 11 01; 122(5):1874-1883.
    View in: PubMed
    Score: 0.485
  8. Recent advances in understanding the physiology of hypoxic sensing by the carotid body. F1000Res. 2018; 7.
    View in: PubMed
    Score: 0.460
  9. H2S mediates carotid body response to hypoxia but not anoxia. Respir Physiol Neurobiol. 2019 01; 259:75-85.
    View in: PubMed
    Score: 0.450
  10. Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia. Cell Tissue Res. 2018 05; 372(2):427-431.
    View in: PubMed
    Score: 0.436
  11. The role of hypoxia-inducible factors in carotid body (patho) physiology. J Physiol. 2018 08; 596(15):2977-2983.
    View in: PubMed
    Score: 0.435
  12. Epigenetic changes by DNA methylation in chronic and intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol. 2017 Dec 01; 313(6):L1096-L1100.
    View in: PubMed
    Score: 0.421
  13. Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after long-term intermittent hypoxia. J Physiol. 2017 01 01; 595(1):63-77.
    View in: PubMed
    Score: 0.396
  14. CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia. J Neurophysiol. 2016 Jan 01; 115(1):345-54.
    View in: PubMed
    Score: 0.372
  15. Oxygen Sensing and Homeostasis. Physiology (Bethesda). 2015 Sep; 30(5):340-8.
    View in: PubMed
    Score: 0.367
  16. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia. Compr Physiol. 2015 Apr; 5(2):561-77.
    View in: PubMed
    Score: 0.357
  17. Neuromolecular mechanisms mediating the effects of chronic intermittent hypoxia on adrenal medulla. Respir Physiol Neurobiol. 2015 Apr; 209:115-9.
    View in: PubMed
    Score: 0.351
  18. Carotid Body Chemoreflex Mediates Intermittent Hypoxia-Induced Oxidative Stress in the Adrenal Medulla. Adv Exp Med Biol. 2015; 860:195-9.
    View in: PubMed
    Score: 0.351
  19. CaV3.2 T-type Ca²? channels in H2S-mediated hypoxic response of the carotid body. Am J Physiol Cell Physiol. 2015 Jan 15; 308(2):C146-54.
    View in: PubMed
    Score: 0.347
  20. Regulation of hypoxia-inducible factor-a isoforms and redox state by carotid body neural activity in rats. J Physiol. 2014 Sep 01; 592(17):3841-58.
    View in: PubMed
    Score: 0.338
  21. Gasotransmitter regulation of ion channels: a key step in O2 sensing by the carotid body. Physiology (Bethesda). 2014 Jan; 29(1):49-57.
    View in: PubMed
    Score: 0.327
  22. Role of oxidative stress-induced endothelin-converting enzyme activity in the alteration of carotid body function by chronic intermittent hypoxia. Exp Physiol. 2013 Nov; 98(11):1620-30.
    View in: PubMed
    Score: 0.318
  23. Sensing hypoxia: physiology, genetics and epigenetics. J Physiol. 2013 May 01; 591(9):2245-57.
    View in: PubMed
    Score: 0.309
  24. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 2012 Jul; 92(3):967-1003.
    View in: PubMed
    Score: 0.295
  25. Endogenous H2S is required for hypoxic sensing by carotid body glomus cells. Am J Physiol Cell Physiol. 2012 Nov 01; 303(9):C916-23.
    View in: PubMed
    Score: 0.295
  26. Sympatho-adrenal activation by chronic intermittent hypoxia. J Appl Physiol (1985). 2012 Oct 15; 113(8):1304-10.
    View in: PubMed
    Score: 0.294
  27. Carbon monoxide (CO) and hydrogen sulfide (H(2)S) in hypoxic sensing by the carotid body. Respir Physiol Neurobiol. 2012 Nov 15; 184(2):165-9.
    View in: PubMed
    Score: 0.293
  28. Gas biology: small molecular medicine. J Mol Med (Berl). 2012 Mar; 90(3):213-5.
    View in: PubMed
    Score: 0.288
  29. Gaseous messengers in oxygen sensing. J Mol Med (Berl). 2012 Mar; 90(3):265-72.
    View in: PubMed
    Score: 0.287
  30. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proc Natl Acad Sci U S A. 2012 Feb 14; 109(7):2515-20.
    View in: PubMed
    Score: 0.285
  31. Hydrogen sulfide (H(2)S): a physiologic mediator of carotid body response to hypoxia. Adv Exp Med Biol. 2012; 758:109-13.
    View in: PubMed
    Score: 0.285
  32. Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J Cell Physiol. 2011 Nov; 226(11):2925-33.
    View in: PubMed
    Score: 0.282
  33. Endothelin-1 mediates attenuated carotid baroreceptor activity by intermittent hypoxia. J Appl Physiol (1985). 2012 Jan; 112(1):187-96.
    View in: PubMed
    Score: 0.281
  34. Sensory plasticity of the carotid body: role of reactive oxygen species and physiological significance. Respir Physiol Neurobiol. 2011 Sep 30; 178(3):375-80.
    View in: PubMed
    Score: 0.273
  35. Hypoxia-inducible factor 2a (HIF-2a) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proc Natl Acad Sci U S A. 2011 Feb 15; 108(7):3065-70.
    View in: PubMed
    Score: 0.267
  36. NADPH oxidase 2 mediates intermittent hypoxia-induced mitochondrial complex I inhibition: relevance to blood pressure changes in rats. Antioxid Redox Signal. 2011 Feb 15; 14(4):533-42.
    View in: PubMed
    Score: 0.262
  37. Intermittent hypoxia augments acute hypoxic sensing via HIF-mediated ROS. Respir Physiol Neurobiol. 2010 Dec 31; 174(3):230-4.
    View in: PubMed
    Score: 0.260
  38. Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respir Physiol Neurobiol. 2010 Nov 30; 174(1-2):156-61.
    View in: PubMed
    Score: 0.260
  39. NADPH oxidase-dependent regulation of T-type Ca2+ channels and ryanodine receptors mediate the augmented exocytosis of catecholamines from intermittent hypoxia-treated neonatal rat chromaffin cells. J Neurosci. 2010 Aug 11; 30(32):10763-72.
    View in: PubMed
    Score: 0.259
  40. Neonatal intermittent hypoxia impairs neuronal nicotinic receptor expression and function in adrenal chromaffin cells. Am J Physiol Cell Physiol. 2010 Aug; 299(2):C381-8.
    View in: PubMed
    Score: 0.258
  41. Intermittent hypoxia-mediated plasticity of acute O2 sensing requires altered red-ox regulation by HIF-1 and HIF-2. Ann N Y Acad Sci. 2009 Oct; 1177:162-8.
    View in: PubMed
    Score: 0.244
  42. Neonatal intermittent hypoxia leads to long-lasting facilitation of acute hypoxia-evoked catecholamine secretion from rat chromaffin cells. J Neurophysiol. 2009 Jun; 101(6):2837-46.
    View in: PubMed
    Score: 0.235
  43. Long-term regulation of carotid body function: acclimatization and adaptation--invited article. Adv Exp Med Biol. 2009; 648:307-17.
    View in: PubMed
    Score: 0.231
  44. Contrasting effects of intermittent and continuous hypoxia on low O(2) evoked catecholamine secretion from neonatal rat chromaffin cells. Adv Exp Med Biol. 2009; 648:345-9.
    View in: PubMed
    Score: 0.231
  45. Reactive oxygen species-dependent endothelin signaling is required for augmented hypoxic sensory response of the neonatal carotid body by intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol. 2009 Mar; 296(3):R735-42.
    View in: PubMed
    Score: 0.231
  46. Post-translational modification of proteins during intermittent hypoxia. Respir Physiol Neurobiol. 2008 Dec 10; 164(1-2):272-6.
    View in: PubMed
    Score: 0.230
  47. Transcriptional responses to intermittent hypoxia. Respir Physiol Neurobiol. 2008 Dec 10; 164(1-2):277-81.
    View in: PubMed
    Score: 0.230
  48. Comparative analysis of neonatal and adult rat carotid body responses to chronic intermittent hypoxia. J Appl Physiol (1985). 2008 May; 104(5):1287-94.
    View in: PubMed
    Score: 0.216
  49. ROS signaling in systemic and cellular responses to chronic intermittent hypoxia. Antioxid Redox Signal. 2007 Sep; 9(9):1397-403.
    View in: PubMed
    Score: 0.211
  50. HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia. Antioxid Redox Signal. 2007 Sep; 9(9):1391-6.
    View in: PubMed
    Score: 0.211
  51. Sensing hypoxia: carotid body mechanisms and reflexes in health and disease. Respir Physiol Neurobiol. 2007 Jul 01; 157(1):1-3.
    View in: PubMed
    Score: 0.203
  52. Altered carotid body function by intermittent hypoxia in neonates and adults: relevance to recurrent apneas. Respir Physiol Neurobiol. 2007 Jul 01; 157(1):148-53.
    View in: PubMed
    Score: 0.202
  53. Novel role for reactive oxygen species as amplifiers of intermittent hypoxia. Focus on "Reactive oxygen species mediate central cardiorespiratory network responses to acute intermittent hypoxia". J Neurophysiol. 2007 Mar; 97(3):1877.
    View in: PubMed
    Score: 0.202
  54. Acute intermittent hypoxia increases both phrenic and sympathetic nerve activities in the rat. Exp Physiol. 2007 Jan; 92(1):87-97.
    View in: PubMed
    Score: 0.200
  55. Systemic, cellular and molecular analysis of chemoreflex-mediated sympathoexcitation by chronic intermittent hypoxia. Exp Physiol. 2007 Jan; 92(1):39-44.
    View in: PubMed
    Score: 0.200
  56. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol. 2006 Dec 01; 577(Pt 2):705-16.
    View in: PubMed
    Score: 0.197
  57. Acute lung injury augments hypoxic ventilatory response in the absence of systemic hypoxemia. J Appl Physiol (1985). 2006 Dec; 101(6):1795-802.
    View in: PubMed
    Score: 0.196
  58. Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress. J Physiol. 2006 Aug 15; 575(Pt 1):229-39.
    View in: PubMed
    Score: 0.194
  59. Modulation of the hypoxic sensory response of the carotid body by 5-hydroxytryptamine: role of the 5-HT2 receptor. Respir Physiol Neurobiol. 2005 Feb 15; 145(2-3):135-42.
    View in: PubMed
    Score: 0.177
  60. Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B. Respir Physiol Neurobiol. 2005 Jan 15; 145(1):23-31.
    View in: PubMed
    Score: 0.176
  61. Cellular and molecular mechanisms associated with carotid body adaptations to chronic hypoxia. High Alt Med Biol. 2005; 6(2):112-20.
    View in: PubMed
    Score: 0.175
  62. Ca2+/calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J Biol Chem. 2005 Feb 11; 280(6):4321-8.
    View in: PubMed
    Score: 0.174
  63. Intermittent hypoxia augments carotid body and ventilatory response to hypoxia in neonatal rat pups. J Appl Physiol (1985). 2004 Nov; 97(5):2020-5.
    View in: PubMed
    Score: 0.170
  64. Role of oxidative stress in intermittent hypoxia-induced immediate early gene activation in rat PC12 cells. J Physiol. 2004 Jun 15; 557(Pt 3):773-83.
    View in: PubMed
    Score: 0.167
  65. Entrainment pattern between sympathetic and phrenic nerve activities in the Sprague-Dawley rat: hypoxia-evoked sympathetic activity during expiration. Am J Physiol Regul Integr Comp Physiol. 2004 Jun; 286(6):R1121-8.
    View in: PubMed
    Score: 0.166
  66. Oxidative stress in the systemic and cellular responses to intermittent hypoxia. Biol Chem. 2004 Mar-Apr; 385(3-4):217-21.
    View in: PubMed
    Score: 0.165
  67. Peripheral chemoreceptors in health and disease. J Appl Physiol (1985). 2004 Jan; 96(1):359-66.
    View in: PubMed
    Score: 0.164
  68. Detection of oxygen sensing during intermittent hypoxia. Methods Enzymol. 2004; 381:107-20.
    View in: PubMed
    Score: 0.164
  69. Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity. J Appl Physiol (1985). 2004 Mar; 96(3):1236-42; discussion 1196.
    View in: PubMed
    Score: 0.163
  70. Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci U S A. 2003 Aug 19; 100(17):10073-8.
    View in: PubMed
    Score: 0.159
  71. Hypoxia sensing requires H2S-dependent persulfidation of olfactory receptor 78. Sci Adv. 2023 07 07; 9(27):eadf3026.
    View in: PubMed
    Score: 0.158
  72. Tachykinins in the control of breathing by hypoxia: pre- and post-genomic era. Respir Physiol Neurobiol. 2003 May 30; 135(2-3):145-54.
    View in: PubMed
    Score: 0.157
  73. Carotid body hypersensitivity in intermittent hypoxia and obtructive sleep apnoea. J Physiol. 2023 Dec; 601(24):5481-5494.
    View in: PubMed
    Score: 0.156
  74. Activation of tyrosine hydroxylase by intermittent hypoxia: involvement of serine phosphorylation. J Appl Physiol (1985). 2003 Aug; 95(2):536-44.
    View in: PubMed
    Score: 0.156
  75. Reactive oxygen species in the plasticity of respiratory behavior elicited by chronic intermittent hypoxia. J Appl Physiol (1985). 2003 Jun; 94(6):2342-9.
    View in: PubMed
    Score: 0.153
  76. Systemic and cellular responses to intermittent hypoxia: evidence for oxidative stress and mitochondrial dysfunction. Adv Exp Med Biol. 2003; 536:559-64.
    View in: PubMed
    Score: 0.153
  77. Carotid body responses to O2 and CO2 in hypoxia-tolerant naked mole rats. Acta Physiol (Oxf). 2022 10; 236(2):e13851.
    View in: PubMed
    Score: 0.147
  78. Protein phosphatase 1 regulates reactive oxygen species-dependent degradation of histone deacetylase 5 by intermittent hypoxia. Am J Physiol Cell Physiol. 2022 08 01; 323(2):C423-C431.
    View in: PubMed
    Score: 0.147
  79. Mutant mice deficient in NOS-1 exhibit attenuated long-term facilitation and short-term potentiation in breathing. J Physiol. 2002 Feb 15; 539(Pt 1):309-15.
    View in: PubMed
    Score: 0.144
  80. Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci U S A. 2002 Jan 22; 99(2):821-6.
    View in: PubMed
    Score: 0.143
  81. Ventilatory changes during intermittent hypoxia: importance of pattern and duration. High Alt Med Biol. 2002; 3(2):195-204.
    View in: PubMed
    Score: 0.142
  82. Intermittent hypoxia: cell to system. Am J Physiol Lung Cell Mol Physiol. 2001 Sep; 281(3):L524-8.
    View in: PubMed
    Score: 0.139
  83. Selected Contribution: Improved anoxic tolerance in rat diaphragm following intermittent hypoxia. J Appl Physiol (1985). 2001 Jun; 90(6):2508-13.
    View in: PubMed
    Score: 0.137
  84. Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. J Appl Physiol (1985). 2001 May; 90(5):1986-94.
    View in: PubMed
    Score: 0.136
  85. Olfactory receptor 78 regulates erythropoietin and cardiorespiratory responses to hypobaric hypoxia. J Appl Physiol (1985). 2021 04 01; 130(4):1122-1132.
    View in: PubMed
    Score: 0.134
  86. Gene regulation during intermittent hypoxia: evidence for the involvement of reactive oxygen species. Adv Exp Med Biol. 2001; 499:297-302.
    View in: PubMed
    Score: 0.133
  87. Chronic intermittent hypoxia enhances carotid body chemoreceptor response to low oxygen. Adv Exp Med Biol. 2001; 499:33-8.
    View in: PubMed
    Score: 0.133
  88. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest. 2020 10 01; 130(10):5042-5051.
    View in: PubMed
    Score: 0.131
  89. Hypoxia-inducible factor-1 mediates pancreatic ß-cell dysfunction by intermittent hypoxia. Am J Physiol Cell Physiol. 2020 11 01; 319(5):C922-C932.
    View in: PubMed
    Score: 0.130
  90. L-type Ca(2+) channel activation regulates induction of c-fos transcription by hypoxia. J Appl Physiol (1985). 2000 May; 88(5):1898-906.
    View in: PubMed
    Score: 0.127
  91. Blunted respiratory responses to hypoxia in mutant mice deficient in nitric oxide synthase-3. J Appl Physiol (1985). 2000 Apr; 88(4):1496-508.
    View in: PubMed
    Score: 0.126
  92. Intracellular pathways linking hypoxia to activation of c-fos and AP-1. Adv Exp Med Biol. 2000; 475:101-9.
    View in: PubMed
    Score: 0.124
  93. Role of substance P in neutral endopeptidase modulation of hypoxic response of the carotid body. Adv Exp Med Biol. 2000; 475:705-13.
    View in: PubMed
    Score: 0.124
  94. Altered respiratory responses to hypoxia in mutant mice deficient in neuronal nitric oxide synthase. J Physiol. 1998 Aug 15; 511 ( Pt 1):273-87.
    View in: PubMed
    Score: 0.113
  95. DNA methylation in the central and efferent limbs of the chemoreflex requires carotid body neural activity. J Physiol. 2018 08; 596(15):3087-3100.
    View in: PubMed
    Score: 0.108
  96. Oxygen Sensing by the Carotid Body: Past and Present. Adv Exp Med Biol. 2017; 977:3-8.
    View in: PubMed
    Score: 0.101
  97. Cellular mechanisms associated with intermittent hypoxia. Essays Biochem. 2007; 43:91-104.
    View in: PubMed
    Score: 0.101
  98. Activation of nitric oxide synthase gene expression by hypoxia in central and peripheral neurons. Brain Res Mol Brain Res. 1996 Dec 31; 43(1-2):341-6.
    View in: PubMed
    Score: 0.101
  99. Integrative genomics reveals hypoxia inducible genes that are associated with a poor prognosis in neuroblastoma patients. Oncotarget. 2016 Nov 22; 7(47):76816-76826.
    View in: PubMed
    Score: 0.100
  100. Carotid body chemoreflex: a driver of autonomic abnormalities in sleep apnoea. Exp Physiol. 2016 08 01; 101(8):975-85.
    View in: PubMed
    Score: 0.098
  101. Induction of immediate early response genes by hypoxia. Possible molecular bases for systems adaptation to low pO2. Adv Exp Med Biol. 1996; 410:127-34.
    View in: PubMed
    Score: 0.094
  102. Regulation of neuronal nitric oxide synthase gene expression by hypoxia. Role of nitric oxide in respiratory adaptation to low pO2. Adv Exp Med Biol. 1996; 410:345-8.
    View in: PubMed
    Score: 0.094
  103. Protein kinase G-regulated production of H2S governs oxygen sensing. Sci Signal. 2015 Apr 21; 8(373):ra37.
    View in: PubMed
    Score: 0.090
  104. Hypoxia-inducible factors and hypertension: lessons from sleep apnea syndrome. J Mol Med (Berl). 2015 May; 93(5):473-80.
    View in: PubMed
    Score: 0.089
  105. Epigenetic Regulation of Carotid Body Oxygen Sensing: Clinical Implications. Adv Exp Med Biol. 2015; 860:1-8.
    View in: PubMed
    Score: 0.088
  106. The human carotid body releases acetylcholine, ATP and cytokines during hypoxia. Exp Physiol. 2014 Aug; 99(8):1089-98.
    View in: PubMed
    Score: 0.084
  107. Tachykinin antagonists in carotid body responses to hypoxia and substance P in the rat. Respir Physiol. 1994 Mar; 95(3):295-310.
    View in: PubMed
    Score: 0.083
  108. Intermittent hypoxia-induced endothelial barrier dysfunction requires ROS-dependent MAP kinase activation. Am J Physiol Cell Physiol. 2014 Apr 15; 306(8):C745-52.
    View in: PubMed
    Score: 0.082
  109. Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema. Proc Natl Acad Sci U S A. 2014 Jan 21; 111(3):1174-9.
    View in: PubMed
    Score: 0.082
  110. Inhibitory sympathetic action on the carotid body responses to sustained hypoxia. Respir Physiol. 1994 Jan; 95(1):67-79.
    View in: PubMed
    Score: 0.082
  111. Selective inhibition of the carotid body sensory response to hypoxia by the substance P receptor antagonist CP-96,345. Proc Natl Acad Sci U S A. 1993 Nov 01; 90(21):10041-5.
    View in: PubMed
    Score: 0.081
  112. Selective blockade of sensory response of the carotid body to hypoxia by NK-1 receptor antagonist CP-96,345. Regul Pept. 1993 Jul 02; 46(1-2):266-8.
    View in: PubMed
    Score: 0.079
  113. Impairment of pancreatic ß-cell function by chronic intermittent hypoxia. Exp Physiol. 2013 Sep; 98(9):1376-85.
    View in: PubMed
    Score: 0.078
  114. Mutual antagonism between hypoxia-inducible factors 1a and 2a regulates oxygen sensing and cardio-respiratory homeostasis. Proc Natl Acad Sci U S A. 2013 May 07; 110(19):E1788-96.
    View in: PubMed
    Score: 0.078
  115. Role of substance P in rat carotid body responses to hypoxia and capsaicin. Adv Exp Med Biol. 1993; 337:265-70.
    View in: PubMed
    Score: 0.076
  116. Differential regulation of tyrosine hydroxylase by continuous and intermittent hypoxia. Adv Exp Med Biol. 2012; 758:381-5.
    View in: PubMed
    Score: 0.071
  117. Role of alpha 2-adrenergic receptors in the carotid body response to isocapnic hypoxia. Respir Physiol. 1991 Mar; 83(3):353-64.
    View in: PubMed
    Score: 0.067
  118. H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci U S A. 2010 Jun 08; 107(23):10719-24.
    View in: PubMed
    Score: 0.064
  119. Pattern-specific sustained activation of tyrosine hydroxylase by intermittent hypoxia: role of reactive oxygen species-dependent downregulation of protein phosphatase 2A and upregulation of protein kinases. Antioxid Redox Signal. 2009 Aug; 11(8):1777-89.
    View in: PubMed
    Score: 0.060
  120. Intermittent hypoxia activates peptidylglycine alpha-amidating monooxygenase in rat brain stem via reactive oxygen species-mediated proteolytic processing. J Appl Physiol (1985). 2009 Jan; 106(1):12-9.
    View in: PubMed
    Score: 0.057
  121. Influence of adrenaline and hypoxia on rat muscle receptors in vitro. Prog Brain Res. 1988; 74:91-7.
    View in: PubMed
    Score: 0.054
  122. Increased secretory capacity of mouse adrenal chromaffin cells by chronic intermittent hypoxia: involvement of protein kinase C. J Physiol. 2007 Oct 01; 584(Pt 1):313-9.
    View in: PubMed
    Score: 0.053
  123. Oxygen sensing in the body. Prog Biophys Mol Biol. 2006 Jul; 91(3):249-86.
    View in: PubMed
    Score: 0.046
  124. Kv1.1 deletion augments the afferent hypoxic chemosensory pathway and respiration. J Neurosci. 2005 Mar 30; 25(13):3389-99.
    View in: PubMed
    Score: 0.045
  125. Effect of substance P antagonist on the hypoxia-induced carotid chemoreceptor activity. Acta Physiol Scand. 1984 Jul; 121(3):301-3.
    View in: PubMed
    Score: 0.042
  126. Transcriptomic Analysis of Postnatal Rat Carotid Body Development. Genes (Basel). 2024 Feb 27; 15(3).
    View in: PubMed
    Score: 0.041
  127. P300/CBP Regulates HIF-1-Dependent Sympathetic Activation and Hypertension by Intermittent Hypoxia. Am J Respir Cell Mol Biol. 2024 Feb; 70(2):110-118.
    View in: PubMed
    Score: 0.041
  128. Acetylcholine release from the carotid body by hypoxia: evidence for the involvement of autoinhibitory receptors. J Appl Physiol (1985). 2004 Jan; 96(1):376-83.
    View in: PubMed
    Score: 0.040
  129. Hypoxia does not uniformly facilitate the release of multiple transmitters from the carotid body. Adv Exp Med Biol. 2003; 536:291-6.
    View in: PubMed
    Score: 0.038
  130. Intermittent hypoxia inhibits epinephrine-induced transcriptional changes in human aortic endothelial cells. Sci Rep. 2022 10 13; 12(1):17167.
    View in: PubMed
    Score: 0.038
  131. CO(2) and pH independently modulate L-type Ca(2+) current in rabbit carotid body glomus cells. J Neurophysiol. 2002 Aug; 88(2):604-12.
    View in: PubMed
    Score: 0.037
  132. Sleep apneas: an oxidative stress? Am J Respir Crit Care Med. 2002 Apr 01; 165(7):859-60.
    View in: PubMed
    Score: 0.036
  133. Role of nitric oxide in short-term potentiation and long-term facilitation: involvement of NO in breathing stability. Adv Exp Med Biol. 2001; 499:215-9.
    View in: PubMed
    Score: 0.033
  134. Neurotransmitter release from the rabbit carotid body: differential effects of hypoxia on substance P and acetylcholine release. Adv Exp Med Biol. 2001; 499:39-43.
    View in: PubMed
    Score: 0.033
  135. Oxygen sensing by the carotid body chemoreceptors. J Appl Physiol (1985). 2000 Jun; 88(6):2287-95.
    View in: PubMed
    Score: 0.032
  136. Involvement of substance P in neutral endopeptidase modulation of carotid body sensory responses to hypoxia. J Appl Physiol (1985). 2000 Jan; 88(1):195-202.
    View in: PubMed
    Score: 0.031
  137. Peripheral chemosensitivity in mutant mice deficient in nitric oxide synthase. Adv Exp Med Biol. 2000; 475:571-9.
    View in: PubMed
    Score: 0.031
  138. Endogenous carbon monoxide in control of respiration. Respir Physiol. 1998 Oct; 114(1):57-64.
    View in: PubMed
    Score: 0.028
  139. Carotid body I1-imidazoline receptors: binding, visualization and modulatory function. Respir Physiol. 1998 Jun; 112(3):239-51.
    View in: PubMed
    Score: 0.028
  140. Nitric oxide and ventilatory response to hypoxia. Respir Physiol. 1995 Sep; 101(3):257-66.
    View in: PubMed
    Score: 0.023
  141. G proteins in carotid body chemoreception. Biol Signals. 1995 Sep-Oct; 4(5):271-6.
    View in: PubMed
    Score: 0.023
  142. Analysis of carotid chemoreceptor responses to substance P analogue in anaesthetized cats. J Auton Nerv Syst. 1995 Mar 18; 52(1):43-50.
    View in: PubMed
    Score: 0.022
  143. Possible genomic mechanism involved in control systems responses to hypoxia. Adv Exp Med Biol. 1995; 393:89-94.
    View in: PubMed
    Score: 0.022
  144. Low PO2 dependency of neutral endopeptidase and acetylcholinesterase activities of the rat carotid body. Adv Exp Med Biol. 1994; 360:217-20.
    View in: PubMed
    Score: 0.020
  145. Effect of arterial chemoreceptor stimulation: role of norepinephrine in hypoxic chemotransmission. Adv Exp Med Biol. 1993; 337:301-6.
    View in: PubMed
    Score: 0.019
  146. Role of substance P in hypercapnic excitation of carotid chemoreceptors. J Appl Physiol (1985). 1987 Dec; 63(6):2418-25.
    View in: PubMed
    Score: 0.013
  147. Analysis of postinspiratory activity of phrenic motoneurons with chemical and vagal reflexes. J Appl Physiol (1985). 1986 Oct; 61(4):1499-509.
    View in: PubMed
    Score: 0.012
  148. Secretion of brain-derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling. J Neurochem. 2006 Feb; 96(3):694-705.
    View in: PubMed
    Score: 0.012
  149. Neural drives and breathing stability. Adv Exp Med Biol. 2001; 499:453-8.
    View in: PubMed
    Score: 0.008
  150. Comparison of the effects of hypercapnia on phrenic and hypoglossal activity in anesthetized decerebrate and decorticate animals. Brain Res Bull. 1986 Aug; 17(2):181-7.
    View in: PubMed
    Score: 0.003
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.