The University of Chicago Header Logo

Connection

Nanduri R. Prabhakar to Carotid Body

This is a "connection" page, showing publications Nanduri R. Prabhakar has written about Carotid Body.
Connection Strength

28.984
  1. Hypoxia sensing requires H2S-dependent persulfidation of olfactory receptor 78. Sci Adv. 2023 07 07; 9(27):eadf3026.
    View in: PubMed
    Score: 0.743
  2. Carotid body hypersensitivity in intermittent hypoxia and obtructive sleep apnoea. J Physiol. 2023 Dec; 601(24):5481-5494.
    View in: PubMed
    Score: 0.734
  3. Carotid body responses to O2 and CO2 in hypoxia-tolerant naked mole rats. Acta Physiol (Oxf). 2022 10; 236(2):e13851.
    View in: PubMed
    Score: 0.692
  4. Role of olfactory receptor78 in carotid body-dependent sympathetic activation and hypertension in murine models of chronic intermittent hypoxia. J Neurophysiol. 2021 06 01; 125(6):2054-2067.
    View in: PubMed
    Score: 0.638
  5. Olfactory receptor 78 regulates erythropoietin and cardiorespiratory responses to hypobaric hypoxia. J Appl Physiol (1985). 2021 04 01; 130(4):1122-1132.
    View in: PubMed
    Score: 0.628
  6. Olfactory receptor 78 participates in carotid body response to a wide range of low O2 levels but not severe hypoxia. J Neurophysiol. 2020 05 01; 123(5):1886-1895.
    View in: PubMed
    Score: 0.592
  7. Recent advances in understanding the physiology of hypoxic sensing by the carotid body. F1000Res. 2018; 7.
    View in: PubMed
    Score: 0.541
  8. H2S mediates carotid body response to hypoxia but not anoxia. Respir Physiol Neurobiol. 2019 01; 259:75-85.
    View in: PubMed
    Score: 0.528
  9. Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia. Cell Tissue Res. 2018 05; 372(2):427-431.
    View in: PubMed
    Score: 0.512
  10. The role of hypoxia-inducible factors in carotid body (patho) physiology. J Physiol. 2018 08; 596(15):2977-2983.
    View in: PubMed
    Score: 0.511
  11. DNA methylation in the central and efferent limbs of the chemoreflex requires carotid body neural activity. J Physiol. 2018 08; 596(15):3087-3100.
    View in: PubMed
    Score: 0.507
  12. Measurement of Sensory Nerve Activity from the Carotid Body. Methods Mol Biol. 2018; 1742:115-124.
    View in: PubMed
    Score: 0.507
  13. Immunohistochemistry of the Carotid Body. Methods Mol Biol. 2018; 1742:155-166.
    View in: PubMed
    Score: 0.507
  14. Therapeutic Targeting of the Carotid Body for Treating Sleep Apnea in a Pre-clinical Mouse Model. Adv Exp Med Biol. 2018; 1071:109-114.
    View in: PubMed
    Score: 0.507
  15. Oxygen Sensing by the Carotid Body: Past and Present. Adv Exp Med Biol. 2017; 977:3-8.
    View in: PubMed
    Score: 0.473
  16. H2S production by reactive oxygen species in the carotid body triggers hypertension in a rodent model of sleep apnea. Sci Signal. 2016 08 16; 9(441):ra80.
    View in: PubMed
    Score: 0.461
  17. Carotid body chemoreflex: a driver of autonomic abnormalities in sleep apnoea. Exp Physiol. 2016 08 01; 101(8):975-85.
    View in: PubMed
    Score: 0.460
  18. CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia. J Neurophysiol. 2016 Jan 01; 115(1):345-54.
    View in: PubMed
    Score: 0.437
  19. Oxygen Sensing and Homeostasis. Physiology (Bethesda). 2015 Sep; 30(5):340-8.
    View in: PubMed
    Score: 0.431
  20. Regulation of carotid body oxygen sensing by hypoxia-inducible factors. Pflugers Arch. 2016 Jan; 468(1):71-75.
    View in: PubMed
    Score: 0.430
  21. Protein kinase G-regulated production of H2S governs oxygen sensing. Sci Signal. 2015 Apr 21; 8(373):ra37.
    View in: PubMed
    Score: 0.420
  22. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia. Compr Physiol. 2015 Apr; 5(2):561-77.
    View in: PubMed
    Score: 0.419
  23. Epigenetic Regulation of Carotid Body Oxygen Sensing: Clinical Implications. Adv Exp Med Biol. 2015; 860:1-8.
    View in: PubMed
    Score: 0.412
  24. Carotid Body Chemoreflex Mediates Intermittent Hypoxia-Induced Oxidative Stress in the Adrenal Medulla. Adv Exp Med Biol. 2015; 860:195-9.
    View in: PubMed
    Score: 0.412
  25. CaV3.2 T-type Ca²? channels in H2S-mediated hypoxic response of the carotid body. Am J Physiol Cell Physiol. 2015 Jan 15; 308(2):C146-54.
    View in: PubMed
    Score: 0.407
  26. Regulation of hypoxia-inducible factor-a isoforms and redox state by carotid body neural activity in rats. J Physiol. 2014 Sep 01; 592(17):3841-58.
    View in: PubMed
    Score: 0.397
  27. Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema. Proc Natl Acad Sci U S A. 2014 Jan 21; 111(3):1174-9.
    View in: PubMed
    Score: 0.385
  28. Gasotransmitter regulation of ion channels: a key step in O2 sensing by the carotid body. Physiology (Bethesda). 2014 Jan; 29(1):49-57.
    View in: PubMed
    Score: 0.384
  29. Role of oxidative stress-induced endothelin-converting enzyme activity in the alteration of carotid body function by chronic intermittent hypoxia. Exp Physiol. 2013 Nov; 98(11):1620-30.
    View in: PubMed
    Score: 0.373
  30. Mutual antagonism between hypoxia-inducible factors 1a and 2a regulates oxygen sensing and cardio-respiratory homeostasis. Proc Natl Acad Sci U S A. 2013 May 07; 110(19):E1788-96.
    View in: PubMed
    Score: 0.366
  31. Sensing hypoxia: physiology, genetics and epigenetics. J Physiol. 2013 May 01; 591(9):2245-57.
    View in: PubMed
    Score: 0.363
  32. Developmental programming of O(2) sensing by neonatal intermittent hypoxia via epigenetic mechanisms. Respir Physiol Neurobiol. 2013 Jan 01; 185(1):105-9.
    View in: PubMed
    Score: 0.348
  33. Endogenous H2S is required for hypoxic sensing by carotid body glomus cells. Am J Physiol Cell Physiol. 2012 Nov 01; 303(9):C916-23.
    View in: PubMed
    Score: 0.346
  34. Carbon monoxide (CO) and hydrogen sulfide (H(2)S) in hypoxic sensing by the carotid body. Respir Physiol Neurobiol. 2012 Nov 15; 184(2):165-9.
    View in: PubMed
    Score: 0.344
  35. Gaseous messengers in oxygen sensing. J Mol Med (Berl). 2012 Mar; 90(3):265-72.
    View in: PubMed
    Score: 0.337
  36. The role of hypoxia-inducible factors in oxygen sensing by the carotid body. Adv Exp Med Biol. 2012; 758:1-5.
    View in: PubMed
    Score: 0.334
  37. Hydrogen sulfide (H(2)S): a physiologic mediator of carotid body response to hypoxia. Adv Exp Med Biol. 2012; 758:109-13.
    View in: PubMed
    Score: 0.334
  38. Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol. 2012 Jan; 2(1):141-219.
    View in: PubMed
    Score: 0.334
  39. Angiotensin II evokes sensory long-term facilitation of the carotid body via NADPH oxidase. J Appl Physiol (1985). 2011 Oct; 111(4):964-70.
    View in: PubMed
    Score: 0.321
  40. Sensory plasticity of the carotid body: role of reactive oxygen species and physiological significance. Respir Physiol Neurobiol. 2011 Sep 30; 178(3):375-80.
    View in: PubMed
    Score: 0.320
  41. Hypoxia-inducible factor 2a (HIF-2a) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proc Natl Acad Sci U S A. 2011 Feb 15; 108(7):3065-70.
    View in: PubMed
    Score: 0.314
  42. H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci U S A. 2010 Jun 08; 107(23):10719-24.
    View in: PubMed
    Score: 0.300
  43. NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J Neurosci. 2009 Apr 15; 29(15):4903-10.
    View in: PubMed
    Score: 0.277
  44. Long-term regulation of carotid body function: acclimatization and adaptation--invited article. Adv Exp Med Biol. 2009; 648:307-17.
    View in: PubMed
    Score: 0.272
  45. Reactive oxygen species-dependent endothelin signaling is required for augmented hypoxic sensory response of the neonatal carotid body by intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol. 2009 Mar; 296(3):R735-42.
    View in: PubMed
    Score: 0.271
  46. Comparative analysis of neonatal and adult rat carotid body responses to chronic intermittent hypoxia. J Appl Physiol (1985). 2008 May; 104(5):1287-94.
    View in: PubMed
    Score: 0.254
  47. Sensing hypoxia: carotid body mechanisms and reflexes in health and disease. Respir Physiol Neurobiol. 2007 Jul 01; 157(1):1-3.
    View in: PubMed
    Score: 0.238
  48. Altered carotid body function by intermittent hypoxia in neonates and adults: relevance to recurrent apneas. Respir Physiol Neurobiol. 2007 Jul 01; 157(1):148-53.
    View in: PubMed
    Score: 0.237
  49. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol. 2006 Dec 01; 577(Pt 2):705-16.
    View in: PubMed
    Score: 0.232
  50. 5-HT evokes sensory long-term facilitation of rodent carotid body via activation of NADPH oxidase. J Physiol. 2006 Oct 01; 576(Pt 1):289-95.
    View in: PubMed
    Score: 0.230
  51. Acute lung injury augments hypoxic ventilatory response in the absence of systemic hypoxemia. J Appl Physiol (1985). 2006 Dec; 101(6):1795-802.
    View in: PubMed
    Score: 0.230
  52. O2 sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters? Exp Physiol. 2006 Jan; 91(1):17-23.
    View in: PubMed
    Score: 0.218
  53. Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin Exp Pharmacol Physiol. 2005 May-Jun; 32(5-6):447-9.
    View in: PubMed
    Score: 0.211
  54. Modulation of the hypoxic sensory response of the carotid body by 5-hydroxytryptamine: role of the 5-HT2 receptor. Respir Physiol Neurobiol. 2005 Feb 15; 145(2-3):135-42.
    View in: PubMed
    Score: 0.208
  55. Cellular and molecular mechanisms associated with carotid body adaptations to chronic hypoxia. High Alt Med Biol. 2005; 6(2):112-20.
    View in: PubMed
    Score: 0.206
  56. Intermittent hypoxia augments carotid body and ventilatory response to hypoxia in neonatal rat pups. J Appl Physiol (1985). 2004 Nov; 97(5):2020-5.
    View in: PubMed
    Score: 0.199
  57. Transcriptomic Analysis of Postnatal Rat Carotid Body Development. Genes (Basel). 2024 Feb 27; 15(3).
    View in: PubMed
    Score: 0.194
  58. Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity. J Appl Physiol (1985). 2004 Mar; 96(3):1236-42; discussion 1196.
    View in: PubMed
    Score: 0.191
  59. Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci U S A. 2003 Aug 19; 100(17):10073-8.
    View in: PubMed
    Score: 0.187
  60. CO(2) and pH independently modulate L-type Ca(2+) current in rabbit carotid body glomus cells. J Neurophysiol. 2002 Aug; 88(2):604-12.
    View in: PubMed
    Score: 0.174
  61. Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci U S A. 2002 Jan 22; 99(2):821-6.
    View in: PubMed
    Score: 0.168
  62. Chronic intermittent hypoxia enhances carotid body chemoreceptor response to low oxygen. Adv Exp Med Biol. 2001; 499:33-8.
    View in: PubMed
    Score: 0.156
  63. CO2/HCO3- modulates K+ and Ca2+ currents in glomus cells of the carotid body. Adv Exp Med Biol. 2001; 499:61-6.
    View in: PubMed
    Score: 0.156
  64. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest. 2020 10 01; 130(10):5042-5051.
    View in: PubMed
    Score: 0.153
  65. Cellular mechanisms of oxygen sensing at the carotid body: heme proteins and ion channels. Respir Physiol. 2000 Sep; 122(2-3):209-21.
    View in: PubMed
    Score: 0.152
  66. Augmentation of L-type calcium current by hypoxia in rabbit carotid body glomus cells: evidence for a PKC-sensitive pathway. J Neurophysiol. 2000 Sep; 84(3):1636-44.
    View in: PubMed
    Score: 0.152
  67. Oxygen sensing by the carotid body chemoreceptors. J Appl Physiol (1985). 2000 Jun; 88(6):2287-95.
    View in: PubMed
    Score: 0.150
  68. HERG-Like potassium current regulates the resting membrane potential in glomus cells of the rabbit carotid body. J Neurophysiol. 2000 Mar; 83(3):1150-7.
    View in: PubMed
    Score: 0.147
  69. Involvement of substance P in neutral endopeptidase modulation of carotid body sensory responses to hypoxia. J Appl Physiol (1985). 2000 Jan; 88(1):195-202.
    View in: PubMed
    Score: 0.146
  70. Chemosensing at the carotid body. Involvement of a HERG-like potassium current in glomus cells. Adv Exp Med Biol. 2000; 475:241-8.
    View in: PubMed
    Score: 0.146
  71. Augmentation of calcium current by hypoxia in carotid body glomus cells. Adv Exp Med Biol. 2000; 475:589-99.
    View in: PubMed
    Score: 0.146
  72. Role of substance P in neutral endopeptidase modulation of hypoxic response of the carotid body. Adv Exp Med Biol. 2000; 475:705-13.
    View in: PubMed
    Score: 0.146
  73. Nitric oxide inhibits L-type Ca2+ current in glomus cells of the rabbit carotid body via a cGMP-independent mechanism. J Neurophysiol. 1999 Apr; 81(4):1449-57.
    View in: PubMed
    Score: 0.138
  74. NO and CO as second messengers in oxygen sensing in the carotid body. Respir Physiol. 1999 Apr 01; 115(2):161-8.
    View in: PubMed
    Score: 0.138
  75. Norepinephrine inhibits a toxin resistant Ca2+ current in carotid body glomus cells: evidence for a direct G protein mechanism. J Neurophysiol. 1999 Jan; 81(1):225-33.
    View in: PubMed
    Score: 0.136
  76. Carotid body I1-imidazoline receptors: binding, visualization and modulatory function. Respir Physiol. 1998 Jun; 112(3):239-51.
    View in: PubMed
    Score: 0.130
  77. Ca2+ current in rabbit carotid body glomus cells is conducted by multiple types of high-voltage-activated Ca2+ channels. J Neurophysiol. 1997 Nov; 78(5):2467-74.
    View in: PubMed
    Score: 0.125
  78. Complementary roles of gasotransmitters CO and H2S in sleep apnea. Proc Natl Acad Sci U S A. 2017 02 07; 114(6):1413-1418.
    View in: PubMed
    Score: 0.119
  79. Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after long-term intermittent hypoxia. J Physiol. 2017 01 01; 595(1):63-77.
    View in: PubMed
    Score: 0.116
  80. Heterogeneity in cytosolic calcium responses to hypoxia in carotid body cells. Brain Res. 1996 Jan 15; 706(2):297-302.
    View in: PubMed
    Score: 0.111
  81. Carbon monoxide and carotid body chemoreception. Adv Exp Med Biol. 1996; 410:341-4.
    View in: PubMed
    Score: 0.110
  82. G proteins in carotid body chemoreception. Biol Signals. 1995 Sep-Oct; 4(5):271-6.
    View in: PubMed
    Score: 0.108
  83. Analysis of carotid chemoreceptor responses to substance P analogue in anaesthetized cats. J Auton Nerv Syst. 1995 Mar 18; 52(1):43-50.
    View in: PubMed
    Score: 0.104
  84. Hypoxia-inducible factors and hypertension: lessons from sleep apnea syndrome. J Mol Med (Berl). 2015 May; 93(5):473-80.
    View in: PubMed
    Score: 0.104
  85. Carbon monoxide: a role in carotid body chemoreception. Proc Natl Acad Sci U S A. 1995 Mar 14; 92(6):1994-7.
    View in: PubMed
    Score: 0.104
  86. The human carotid body releases acetylcholine, ATP and cytokines during hypoxia. Exp Physiol. 2014 Aug; 99(8):1089-98.
    View in: PubMed
    Score: 0.099
  87. Is insulin the new intermittent hypoxia? Med Hypotheses. 2014 Jun; 82(6):730-5.
    View in: PubMed
    Score: 0.097
  88. Tachykinin antagonists in carotid body responses to hypoxia and substance P in the rat. Respir Physiol. 1994 Mar; 95(3):295-310.
    View in: PubMed
    Score: 0.097
  89. Neurotransmitters in the carotid body. Adv Exp Med Biol. 1994; 360:57-69.
    View in: PubMed
    Score: 0.096
  90. Inhibitory sympathetic action on the carotid body responses to sustained hypoxia. Respir Physiol. 1994 Jan; 95(1):67-79.
    View in: PubMed
    Score: 0.096
  91. Selective inhibition of the carotid body sensory response to hypoxia by the substance P receptor antagonist CP-96,345. Proc Natl Acad Sci U S A. 1993 Nov 01; 90(21):10041-5.
    View in: PubMed
    Score: 0.095
  92. Nitric oxide in the sensory function of the carotid body. Brain Res. 1993 Oct 15; 625(1):16-22.
    View in: PubMed
    Score: 0.095
  93. Selective blockade of sensory response of the carotid body to hypoxia by NK-1 receptor antagonist CP-96,345. Regul Pept. 1993 Jul 02; 46(1-2):266-8.
    View in: PubMed
    Score: 0.093
  94. Role of substance P in rat carotid body responses to hypoxia and capsaicin. Adv Exp Med Biol. 1993; 337:265-70.
    View in: PubMed
    Score: 0.090
  95. Effect of arterial chemoreceptor stimulation: role of norepinephrine in hypoxic chemotransmission. Adv Exp Med Biol. 1993; 337:301-6.
    View in: PubMed
    Score: 0.090
  96. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 2012 Jul; 92(3):967-1003.
    View in: PubMed
    Score: 0.087
  97. Particulate matter induces cardiac arrhythmias via dysregulation of carotid body sensitivity and cardiac sodium channels. Am J Respir Cell Mol Biol. 2012 Apr; 46(4):524-31.
    View in: PubMed
    Score: 0.083
  98. Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J Cell Physiol. 2011 Nov; 226(11):2925-33.
    View in: PubMed
    Score: 0.083
  99. Endothelin-1 mediates attenuated carotid baroreceptor activity by intermittent hypoxia. J Appl Physiol (1985). 2012 Jan; 112(1):187-96.
    View in: PubMed
    Score: 0.082
  100. Role of alpha 2-adrenergic receptors in the carotid body response to isocapnic hypoxia. Respir Physiol. 1991 Mar; 83(3):353-64.
    View in: PubMed
    Score: 0.079
  101. Chemoreceptor responses to substance P, physalaemin and eledoisin: evidence for neurokinin-1 receptors in the cat carotid body. Neurosci Lett. 1990 Dec 11; 120(2):183-6.
    View in: PubMed
    Score: 0.078
  102. Intermittent hypoxia augments acute hypoxic sensing via HIF-mediated ROS. Respir Physiol Neurobiol. 2010 Dec 31; 174(3):230-4.
    View in: PubMed
    Score: 0.076
  103. Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respir Physiol Neurobiol. 2010 Nov 30; 174(1-2):156-61.
    View in: PubMed
    Score: 0.076
  104. Occurrence of neutral endopeptidase activity in the cat carotid body and its significance in chemoreception. Brain Res. 1990 May 28; 517(1-2):341-3.
    View in: PubMed
    Score: 0.075
  105. Effect of adenosine on isolated and superfused cat carotid body activity. Neurosci Lett. 1990 May 18; 113(1):111-4.
    View in: PubMed
    Score: 0.075
  106. Intermittent hypoxia-mediated plasticity of acute O2 sensing requires altered red-ox regulation by HIF-1 and HIF-2. Ann N Y Acad Sci. 2009 Oct; 1177:162-8.
    View in: PubMed
    Score: 0.072
  107. Substance P and neurokinin A in the cat carotid body: localization, exogenous effects and changes in content in response to arterial pO2. Brain Res. 1989 Mar 06; 481(2):205-14.
    View in: PubMed
    Score: 0.069
  108. Role of substance P in hypercapnic excitation of carotid chemoreceptors. J Appl Physiol (1985). 1987 Dec; 63(6):2418-25.
    View in: PubMed
    Score: 0.063
  109. Pronounced depression by propofol on carotid body response to CO2 and K+-induced carotid body activation. Respir Physiol Neurobiol. 2008 Feb 29; 160(3):284-8.
    View in: PubMed
    Score: 0.063
  110. ROS signaling in systemic and cellular responses to chronic intermittent hypoxia. Antioxid Redox Signal. 2007 Sep; 9(9):1397-403.
    View in: PubMed
    Score: 0.062
  111. Oxygen sensing in the body. Prog Biophys Mol Biol. 2006 Jul; 91(3):249-86.
    View in: PubMed
    Score: 0.054
  112. Effect of substance P antagonist on the hypoxia-induced carotid chemoreceptor activity. Acta Physiol Scand. 1984 Jul; 121(3):301-3.
    View in: PubMed
    Score: 0.050
  113. Detection of oxygen sensing during intermittent hypoxia. Methods Enzymol. 2004; 381:107-20.
    View in: PubMed
    Score: 0.048
  114. Attenuated outward potassium currents in carotid body glomus cells of heart failure rabbit: involvement of nitric oxide. J Physiol. 2004 Feb 15; 555(Pt 1):219-29.
    View in: PubMed
    Score: 0.048
  115. Acetylcholine release from the carotid body by hypoxia: evidence for the involvement of autoinhibitory receptors. J Appl Physiol (1985). 2004 Jan; 96(1):376-83.
    View in: PubMed
    Score: 0.047
  116. Hypoxia does not uniformly facilitate the release of multiple transmitters from the carotid body. Adv Exp Med Biol. 2003; 536:291-6.
    View in: PubMed
    Score: 0.045
  117. Systemic and cellular responses to intermittent hypoxia: evidence for oxidative stress and mitochondrial dysfunction. Adv Exp Med Biol. 2003; 536:559-64.
    View in: PubMed
    Score: 0.045
  118. Ventilatory changes during intermittent hypoxia: importance of pattern and duration. High Alt Med Biol. 2002; 3(2):195-204.
    View in: PubMed
    Score: 0.042
  119. Intermittent hypoxia: cell to system. Am J Physiol Lung Cell Mol Physiol. 2001 Sep; 281(3):L524-8.
    View in: PubMed
    Score: 0.041
  120. Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. J Appl Physiol (1985). 2001 May; 90(5):1986-94.
    View in: PubMed
    Score: 0.040
  121. Release of substance P by low oxygen in the rabbit carotid body: evidence for the involvement of calcium channels. Brain Res. 2001 Feb 23; 892(2):359-69.
    View in: PubMed
    Score: 0.039
  122. Neurotransmitter release from the rabbit carotid body: differential effects of hypoxia on substance P and acetylcholine release. Adv Exp Med Biol. 2001; 499:39-43.
    View in: PubMed
    Score: 0.039
  123. Blunted respiratory responses to hypoxia in mutant mice deficient in nitric oxide synthase-3. J Appl Physiol (1985). 2000 Apr; 88(4):1496-508.
    View in: PubMed
    Score: 0.037
  124. Peripheral chemosensitivity in mutant mice deficient in nitric oxide synthase. Adv Exp Med Biol. 2000; 475:571-9.
    View in: PubMed
    Score: 0.036
  125. Endogenous carbon monoxide in control of respiration. Respir Physiol. 1998 Oct; 114(1):57-64.
    View in: PubMed
    Score: 0.033
  126. Gases as chemical messengers in the carotid body. Role of nitric oxide and carbon monoxide in chemoreception. Adv Exp Med Biol. 1995; 393:309-12.
    View in: PubMed
    Score: 0.026
  127. Low PO2 dependency of neutral endopeptidase and acetylcholinesterase activities of the rat carotid body. Adv Exp Med Biol. 1994; 360:217-20.
    View in: PubMed
    Score: 0.024
  128. Kv1.1 deletion augments the afferent hypoxic chemosensory pathway and respiration. J Neurosci. 2005 Mar 30; 25(13):3389-99.
    View in: PubMed
    Score: 0.013
  129. Nitric oxide and ventilatory response to hypoxia. Respir Physiol. 1995 Sep; 101(3):257-66.
    View in: PubMed
    Score: 0.007
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.