The University of Chicago Header Logo

Connection

Nanduri R. Prabhakar to Humans

This is a "connection" page, showing publications Nanduri R. Prabhakar has written about Humans.
Connection Strength

0.928
  1. Hypoxia sensing requires H2S-dependent persulfidation of olfactory receptor 78. Sci Adv. 2023 07 07; 9(27):eadf3026.
    View in: PubMed
    Score: 0.029
  2. Adaptive cardiorespiratory changes to chronic continuous and intermittent hypoxia. Handb Clin Neurol. 2022; 188:103-123.
    View in: PubMed
    Score: 0.026
  3. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest. 2020 10 01; 130(10):5042-5051.
    View in: PubMed
    Score: 0.024
  4. 2019 Nobel Prize in Physiology or Medicine. Physiology (Bethesda). 2020 03 01; 35(2):81-83.
    View in: PubMed
    Score: 0.023
  5. Recent advances in understanding the physiology of hypoxic sensing by the carotid body. F1000Res. 2018; 7.
    View in: PubMed
    Score: 0.021
  6. Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia. Cell Tissue Res. 2018 05; 372(2):427-431.
    View in: PubMed
    Score: 0.020
  7. The role of hypoxia-inducible factors in carotid body (patho) physiology. J Physiol. 2018 08; 596(15):2977-2983.
    View in: PubMed
    Score: 0.020
  8. Epigenetic changes by DNA methylation in chronic and intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol. 2017 Dec 01; 313(6):L1096-L1100.
    View in: PubMed
    Score: 0.019
  9. Oxygen Sensing by the Carotid Body: Past and Present. Adv Exp Med Biol. 2017; 977:3-8.
    View in: PubMed
    Score: 0.018
  10. Carotid body chemoreflex: a driver of autonomic abnormalities in sleep apnoea. Exp Physiol. 2016 08 01; 101(8):975-85.
    View in: PubMed
    Score: 0.018
  11. CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia. J Neurophysiol. 2016 Jan 01; 115(1):345-54.
    View in: PubMed
    Score: 0.017
  12. Oxygen Sensing and Homeostasis. Physiology (Bethesda). 2015 Sep; 30(5):340-8.
    View in: PubMed
    Score: 0.017
  13. Regulation of carotid body oxygen sensing by hypoxia-inducible factors. Pflugers Arch. 2016 Jan; 468(1):71-75.
    View in: PubMed
    Score: 0.017
  14. Neural regulation of hypoxia-inducible factors and redox state drives the pathogenesis of hypertension in a rodent model of sleep apnea. J Appl Physiol (1985). 2015 Nov 15; 119(10):1152-6.
    View in: PubMed
    Score: 0.016
  15. Protein kinase G-regulated production of H2S governs oxygen sensing. Sci Signal. 2015 Apr 21; 8(373):ra37.
    View in: PubMed
    Score: 0.016
  16. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia. Compr Physiol. 2015 Apr; 5(2):561-77.
    View in: PubMed
    Score: 0.016
  17. Hypoxia-inducible factors and hypertension: lessons from sleep apnea syndrome. J Mol Med (Berl). 2015 May; 93(5):473-80.
    View in: PubMed
    Score: 0.016
  18. Neuromolecular mechanisms mediating the effects of chronic intermittent hypoxia on adrenal medulla. Respir Physiol Neurobiol. 2015 Apr; 209:115-9.
    View in: PubMed
    Score: 0.016
  19. Epigenetic Regulation of Carotid Body Oxygen Sensing: Clinical Implications. Adv Exp Med Biol. 2015; 860:1-8.
    View in: PubMed
    Score: 0.016
  20. Hypoxia-inducible factors regulate human and rat cystathionine ß-synthase gene expression. Biochem J. 2014 Mar 01; 458(2):203-11.
    View in: PubMed
    Score: 0.015
  21. Intermittent hypoxia-induced endothelial barrier dysfunction requires ROS-dependent MAP kinase activation. Am J Physiol Cell Physiol. 2014 Apr 15; 306(8):C745-52.
    View in: PubMed
    Score: 0.015
  22. Gasotransmitter regulation of ion channels: a key step in O2 sensing by the carotid body. Physiology (Bethesda). 2014 Jan; 29(1):49-57.
    View in: PubMed
    Score: 0.015
  23. Central and peripheral factors contributing to obstructive sleep apneas. Respir Physiol Neurobiol. 2013 Nov 01; 189(2):344-53.
    View in: PubMed
    Score: 0.014
  24. Sensing hypoxia: physiology, genetics and epigenetics. J Physiol. 2013 May 01; 591(9):2245-57.
    View in: PubMed
    Score: 0.014
  25. Developmental programming of O(2) sensing by neonatal intermittent hypoxia via epigenetic mechanisms. Respir Physiol Neurobiol. 2013 Jan 01; 185(1):105-9.
    View in: PubMed
    Score: 0.014
  26. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 2012 Jul; 92(3):967-1003.
    View in: PubMed
    Score: 0.013
  27. Sympatho-adrenal activation by chronic intermittent hypoxia. J Appl Physiol (1985). 2012 Oct 15; 113(8):1304-10.
    View in: PubMed
    Score: 0.013
  28. Carbon monoxide (CO) and hydrogen sulfide (H(2)S) in hypoxic sensing by the carotid body. Respir Physiol Neurobiol. 2012 Nov 15; 184(2):165-9.
    View in: PubMed
    Score: 0.013
  29. Gas biology: small molecular medicine. J Mol Med (Berl). 2012 Mar; 90(3):213-5.
    View in: PubMed
    Score: 0.013
  30. Gaseous messengers in oxygen sensing. J Mol Med (Berl). 2012 Mar; 90(3):265-72.
    View in: PubMed
    Score: 0.013
  31. The role of hypoxia-inducible factors in oxygen sensing by the carotid body. Adv Exp Med Biol. 2012; 758:1-5.
    View in: PubMed
    Score: 0.013
  32. Hydrogen sulfide (H(2)S): a physiologic mediator of carotid body response to hypoxia. Adv Exp Med Biol. 2012; 758:109-13.
    View in: PubMed
    Score: 0.013
  33. Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol. 2012 Jan; 2(1):141-219.
    View in: PubMed
    Score: 0.013
  34. Institute for integrative physiology: resurrection of physiology at the University of Chicago. Physiologist. 2011 Dec; 54(6):235-6.
    View in: PubMed
    Score: 0.013
  35. Sensory plasticity of the carotid body: role of reactive oxygen species and physiological significance. Respir Physiol Neurobiol. 2011 Sep 30; 178(3):375-80.
    View in: PubMed
    Score: 0.012
  36. Intermittent hypoxia augments acute hypoxic sensing via HIF-mediated ROS. Respir Physiol Neurobiol. 2010 Dec 31; 174(3):230-4.
    View in: PubMed
    Score: 0.012
  37. Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respir Physiol Neurobiol. 2010 Nov 30; 174(1-2):156-61.
    View in: PubMed
    Score: 0.012
  38. Intermittent hypoxia-mediated plasticity of acute O2 sensing requires altered red-ox regulation by HIF-1 and HIF-2. Ann N Y Acad Sci. 2009 Oct; 1177:162-8.
    View in: PubMed
    Score: 0.011
  39. Hypoxia inhibits maturation and trafficking of hERG K(+) channel protein: Role of Hsp90 and ROS. Biochem Biophys Res Commun. 2009 Oct 16; 388(2):212-6.
    View in: PubMed
    Score: 0.011
  40. Intermittent hypoxia degrades HIF-2alpha via calpains resulting in oxidative stress: implications for recurrent apnea-induced morbidities. Proc Natl Acad Sci U S A. 2009 Jan 27; 106(4):1199-204.
    View in: PubMed
    Score: 0.011
  41. Long-term regulation of carotid body function: acclimatization and adaptation--invited article. Adv Exp Med Biol. 2009; 648:307-17.
    View in: PubMed
    Score: 0.011
  42. Post-translational modification of proteins during intermittent hypoxia. Respir Physiol Neurobiol. 2008 Dec 10; 164(1-2):272-6.
    View in: PubMed
    Score: 0.010
  43. Transcriptional responses to intermittent hypoxia. Respir Physiol Neurobiol. 2008 Dec 10; 164(1-2):277-81.
    View in: PubMed
    Score: 0.010
  44. Mitochondrial reactive oxygen species mediate hypoxic down-regulation of hERG channel protein. Biochem Biophys Res Commun. 2008 Aug 22; 373(2):309-14.
    View in: PubMed
    Score: 0.010
  45. ROS signaling in systemic and cellular responses to chronic intermittent hypoxia. Antioxid Redox Signal. 2007 Sep; 9(9):1397-403.
    View in: PubMed
    Score: 0.010
  46. HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia. Antioxid Redox Signal. 2007 Sep; 9(9):1391-6.
    View in: PubMed
    Score: 0.010
  47. Sensing hypoxia: carotid body mechanisms and reflexes in health and disease. Respir Physiol Neurobiol. 2007 Jul 01; 157(1):1-3.
    View in: PubMed
    Score: 0.009
  48. Altered carotid body function by intermittent hypoxia in neonates and adults: relevance to recurrent apneas. Respir Physiol Neurobiol. 2007 Jul 01; 157(1):148-53.
    View in: PubMed
    Score: 0.009
  49. Systemic, cellular and molecular analysis of chemoreflex-mediated sympathoexcitation by chronic intermittent hypoxia. Exp Physiol. 2007 Jan; 92(1):39-44.
    View in: PubMed
    Score: 0.009
  50. Regulation of gene expression by HIF-1. Novartis Found Symp. 2006; 272:2-8; discussion 8-14, 33-6.
    View in: PubMed
    Score: 0.009
  51. Reactive oxygen species facilitate oxygen sensing. Novartis Found Symp. 2006; 272:95-9; discussion 100-5, 131-40.
    View in: PubMed
    Score: 0.009
  52. O2 sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters? Exp Physiol. 2006 Jan; 91(1):17-23.
    View in: PubMed
    Score: 0.008
  53. Oxygen sensing in the body. Prog Biophys Mol Biol. 2006 Jul; 91(3):249-86.
    View in: PubMed
    Score: 0.008
  54. Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin Exp Pharmacol Physiol. 2005 May-Jun; 32(5-6):447-9.
    View in: PubMed
    Score: 0.008
  55. Cellular and molecular mechanisms associated with carotid body adaptations to chronic hypoxia. High Alt Med Biol. 2005; 6(2):112-20.
    View in: PubMed
    Score: 0.008
  56. Oxidative stress in the systemic and cellular responses to intermittent hypoxia. Biol Chem. 2004 Mar-Apr; 385(3-4):217-21.
    View in: PubMed
    Score: 0.008
  57. Peripheral chemoreceptors in health and disease. J Appl Physiol (1985). 2004 Jan; 96(1):359-66.
    View in: PubMed
    Score: 0.007
  58. Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci U S A. 2003 Aug 19; 100(17):10073-8.
    View in: PubMed
    Score: 0.007
  59. Tachykinins in the control of breathing by hypoxia: pre- and post-genomic era. Respir Physiol Neurobiol. 2003 May 30; 135(2-3):145-54.
    View in: PubMed
    Score: 0.007
  60. Intermittent hypoxia inhibits epinephrine-induced transcriptional changes in human aortic endothelial cells. Sci Rep. 2022 10 13; 12(1):17167.
    View in: PubMed
    Score: 0.007
  61. Sleep apneas: an oxidative stress? Am J Respir Crit Care Med. 2002 Apr 01; 165(7):859-60.
    View in: PubMed
    Score: 0.007
  62. Ventilatory changes during intermittent hypoxia: importance of pattern and duration. High Alt Med Biol. 2002; 3(2):195-204.
    View in: PubMed
    Score: 0.006
  63. Intermittent hypoxia: cell to system. Am J Physiol Lung Cell Mol Physiol. 2001 Sep; 281(3):L524-8.
    View in: PubMed
    Score: 0.006
  64. Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. J Appl Physiol (1985). 2001 May; 90(5):1986-94.
    View in: PubMed
    Score: 0.006
  65. CO2/HCO3- modulates K+ and Ca2+ currents in glomus cells of the carotid body. Adv Exp Med Biol. 2001; 499:61-6.
    View in: PubMed
    Score: 0.006
  66. Peripheral and central chemosensitivity: multiple mechanisms, multiple sites? A workshop summary. Adv Exp Med Biol. 2001; 499:73-80.
    View in: PubMed
    Score: 0.006
  67. Cellular mechanisms of oxygen sensing at the carotid body: heme proteins and ion channels. Respir Physiol. 2000 Sep; 122(2-3):209-21.
    View in: PubMed
    Score: 0.006
  68. Role of the carotid chemoreceptors in insulin-mediated sympathoexcitation in humans. Am J Physiol Regul Integr Comp Physiol. 2020 01 01; 318(1):R173-R181.
    View in: PubMed
    Score: 0.006
  69. Hypoxia induced hERG trafficking defect linked to cell cycle arrest in SH-SY5Y cells. PLoS One. 2019; 14(4):e0215905.
    View in: PubMed
    Score: 0.005
  70. HIF-1a is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium. Elife. 2017 05 30; 6.
    View in: PubMed
    Score: 0.005
  71. Systems biology of oxygen homeostasis. Wiley Interdiscip Rev Syst Biol Med. 2017 07; 9(4).
    View in: PubMed
    Score: 0.005
  72. Cellular mechanisms associated with intermittent hypoxia. Essays Biochem. 2007; 43:91-104.
    View in: PubMed
    Score: 0.005
  73. Integrative genomics reveals hypoxia inducible genes that are associated with a poor prognosis in neuroblastoma patients. Oncotarget. 2016 Nov 22; 7(47):76816-76826.
    View in: PubMed
    Score: 0.005
  74. Calpain activation by ROS mediates human ether-a-go-go-related gene protein degradation by intermittent hypoxia. Am J Physiol Cell Physiol. 2016 Mar 01; 310(5):C329-36.
    View in: PubMed
    Score: 0.004
  75. The human carotid body releases acetylcholine, ATP and cytokines during hypoxia. Exp Physiol. 2014 Aug; 99(8):1089-98.
    View in: PubMed
    Score: 0.004
  76. TET1-mediated hydroxymethylation facilitates hypoxic gene induction in neuroblastoma. Cell Rep. 2014 Jun 12; 7(5):1343-1352.
    View in: PubMed
    Score: 0.004
  77. Is insulin the new intermittent hypoxia? Med Hypotheses. 2014 Jun; 82(6):730-5.
    View in: PubMed
    Score: 0.004
  78. Neurotransmitters in the carotid body. Adv Exp Med Biol. 1994; 360:57-69.
    View in: PubMed
    Score: 0.004
  79. Impairment of pancreatic ß-cell function by chronic intermittent hypoxia. Exp Physiol. 2013 Sep; 98(9):1376-85.
    View in: PubMed
    Score: 0.004
  80. NADPH oxidase-derived H(2)O(2) contributes to angiotensin II-induced aldosterone synthesis in human and rat adrenal cortical cells. Antioxid Redox Signal. 2012 Aug 01; 17(3):445-59.
    View in: PubMed
    Score: 0.003
  81. Differential regulation of tyrosine hydroxylase by continuous and intermittent hypoxia. Adv Exp Med Biol. 2012; 758:381-5.
    View in: PubMed
    Score: 0.003
  82. Functional role of substance P for respiratory control during development. Ann N Y Acad Sci. 1991; 632:48-52.
    View in: PubMed
    Score: 0.003
  83. Strategic plan for pediatric respiratory diseases research: an NHLBI working group report. Proc Am Thorac Soc. 2009 Jan 15; 6(1):1-10.
    View in: PubMed
    Score: 0.003
  84. Strategic plan for pediatric respiratory diseases research: an NHLBI working group report. Pediatr Pulmonol. 2009 Jan; 44(1):2-13.
    View in: PubMed
    Score: 0.003
  85. Neural drives and breathing stability. Adv Exp Med Biol. 2001; 499:453-8.
    View in: PubMed
    Score: 0.002
  86. Possible genomic mechanism involved in control systems responses to hypoxia. Adv Exp Med Biol. 1995; 393:89-94.
    View in: PubMed
    Score: 0.001
  87. Respiratory and vasomotor influences of the ventrolateral medulla. Clin Exp Hypertens A. 1988; 10 Suppl 1:1-9.
    View in: PubMed
    Score: 0.001
  88. Plasma renin activity and cardiovascular changes in patients with chronic bladder distension. Urol Int. 1982; 37(5):363-8.
    View in: PubMed
    Score: 0.000
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.