The University of Chicago Header Logo

Connection

Nanduri R. Prabhakar to PC12 Cells

This is a "connection" page, showing publications Nanduri R. Prabhakar has written about PC12 Cells.
Connection Strength

1.763
  1. Lysine demethylase KDM6B regulates HIF-1a-mediated systemic and cellular responses to intermittent hypoxia. Physiol Genomics. 2021 09 01; 53(9):385-394.
    View in: PubMed
    Score: 0.193
  2. Release of dopamine and norepinephrine by hypoxia from PC-12 cells. Am J Physiol. 1998 06; 274(6):C1592-600.
    View in: PubMed
    Score: 0.155
  3. HIF-1a activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase. PLoS One. 2015; 10(3):e0119762.
    View in: PubMed
    Score: 0.124
  4. Hypoxia-inducible factors regulate human and rat cystathionine ß-synthase gene expression. Biochem J. 2014 Mar 01; 458(2):203-11.
    View in: PubMed
    Score: 0.116
  5. Xanthine oxidase mediates hypoxia-inducible factor-2a degradation by intermittent hypoxia. PLoS One. 2013; 8(10):e75838.
    View in: PubMed
    Score: 0.112
  6. Mutual antagonism between hypoxia-inducible factors 1a and 2a regulates oxygen sensing and cardio-respiratory homeostasis. Proc Natl Acad Sci U S A. 2013 May 07; 110(19):E1788-96.
    View in: PubMed
    Score: 0.109
  7. Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J Cell Physiol. 2011 Nov; 226(11):2925-33.
    View in: PubMed
    Score: 0.098
  8. NADPH oxidase 2 mediates intermittent hypoxia-induced mitochondrial complex I inhibition: relevance to blood pressure changes in rats. Antioxid Redox Signal. 2011 Feb 15; 14(4):533-42.
    View in: PubMed
    Score: 0.092
  9. Intermittent hypoxia degrades HIF-2alpha via calpains resulting in oxidative stress: implications for recurrent apnea-induced morbidities. Proc Natl Acad Sci U S A. 2009 Jan 27; 106(4):1199-204.
    View in: PubMed
    Score: 0.081
  10. Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol. 2008 Dec; 217(3):674-85.
    View in: PubMed
    Score: 0.080
  11. Ca2+/calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J Biol Chem. 2005 Feb 11; 280(6):4321-8.
    View in: PubMed
    Score: 0.061
  12. Role of oxidative stress in intermittent hypoxia-induced immediate early gene activation in rat PC12 cells. J Physiol. 2004 Jun 15; 557(Pt 3):773-83.
    View in: PubMed
    Score: 0.058
  13. Activation of tyrosine hydroxylase by intermittent hypoxia: involvement of serine phosphorylation. J Appl Physiol (1985). 2003 Aug; 95(2):536-44.
    View in: PubMed
    Score: 0.054
  14. Systemic and cellular responses to intermittent hypoxia: evidence for oxidative stress and mitochondrial dysfunction. Adv Exp Med Biol. 2003; 536:559-64.
    View in: PubMed
    Score: 0.053
  15. Gene regulation during intermittent hypoxia: evidence for the involvement of reactive oxygen species. Adv Exp Med Biol. 2001; 499:297-302.
    View in: PubMed
    Score: 0.046
  16. L-type Ca(2+) channel activation regulates induction of c-fos transcription by hypoxia. J Appl Physiol (1985). 2000 May; 88(5):1898-906.
    View in: PubMed
    Score: 0.044
  17. Intracellular pathways linking hypoxia to activation of c-fos and AP-1. Adv Exp Med Biol. 2000; 475:101-9.
    View in: PubMed
    Score: 0.043
  18. Dual influence of nitric oxide on gene regulation during hypoxia. Adv Exp Med Biol. 2000; 475:285-92.
    View in: PubMed
    Score: 0.043
  19. Role of c-fos in hypoxia-induced AP-1 cis-element activity and tyrosine hydroxylase gene expression. Brain Res Mol Brain Res. 1998 Aug 15; 59(1):74-83.
    View in: PubMed
    Score: 0.039
  20. Heterogeneity in cytosolic calcium responses to hypoxia in carotid body cells. Brain Res. 1996 Jan 15; 706(2):297-302.
    View in: PubMed
    Score: 0.033
  21. Induction of immediate early response genes by hypoxia. Possible molecular bases for systems adaptation to low pO2. Adv Exp Med Biol. 1996; 410:127-34.
    View in: PubMed
    Score: 0.033
  22. Cell selective induction and transcriptional activation of immediate early genes by hypoxia. Brain Res. 1995 Oct 30; 697(1-2):266-70.
    View in: PubMed
    Score: 0.032
  23. Post-translational modification of glutamic acid decarboxylase 67 by intermittent hypoxia: evidence for the involvement of dopamine D1 receptor signaling. J Neurochem. 2010 Dec; 115(6):1568-78.
    View in: PubMed
    Score: 0.023
  24. Secretion of brain-derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling. J Neurochem. 2006 Feb; 96(3):694-705.
    View in: PubMed
    Score: 0.016
  25. Facilitation of dopamine and acetylcholine release by intermittent hypoxia in PC12 cells: involvement of calcium and reactive oxygen species. J Appl Physiol (1985). 2004 Mar; 96(3):1206-15; discussion 1196.
    View in: PubMed
    Score: 0.014
  26. Possible genomic mechanism involved in control systems responses to hypoxia. Adv Exp Med Biol. 1995; 393:89-94.
    View in: PubMed
    Score: 0.008
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.