The University of Chicago Header Logo

Connection

Nanduri R. Prabhakar to Sleep Apnea Syndromes

This is a "connection" page, showing publications Nanduri R. Prabhakar has written about Sleep Apnea Syndromes.
Connection Strength

5.005
  1. Carotid body hypersensitivity in intermittent hypoxia and obtructive sleep apnoea. J Physiol. 2023 Dec; 601(24):5481-5494.
    View in: PubMed
    Score: 0.807
  2. Therapeutic Targeting of the Carotid Body for Treating Sleep Apnea in a Pre-clinical Mouse Model. Adv Exp Med Biol. 2018; 1071:109-114.
    View in: PubMed
    Score: 0.557
  3. Complementary roles of gasotransmitters CO and H2S in sleep apnea. Proc Natl Acad Sci U S A. 2017 02 07; 114(6):1413-1418.
    View in: PubMed
    Score: 0.522
  4. H2S production by reactive oxygen species in the carotid body triggers hypertension in a rodent model of sleep apnea. Sci Signal. 2016 08 16; 9(441):ra80.
    View in: PubMed
    Score: 0.507
  5. Carotid body chemoreflex: a driver of autonomic abnormalities in sleep apnoea. Exp Physiol. 2016 08 01; 101(8):975-85.
    View in: PubMed
    Score: 0.505
  6. Neural regulation of hypoxia-inducible factors and redox state drives the pathogenesis of hypertension in a rodent model of sleep apnea. J Appl Physiol (1985). 2015 Nov 15; 119(10):1152-6.
    View in: PubMed
    Score: 0.464
  7. Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J Cell Physiol. 2011 Nov; 226(11):2925-33.
    View in: PubMed
    Score: 0.363
  8. HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia. Antioxid Redox Signal. 2007 Sep; 9(9):1391-6.
    View in: PubMed
    Score: 0.272
  9. Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci U S A. 2003 Aug 19; 100(17):10073-8.
    View in: PubMed
    Score: 0.205
  10. Sleep apneas: an oxidative stress? Am J Respir Crit Care Med. 2002 Apr 01; 165(7):859-60.
    View in: PubMed
    Score: 0.187
  11. The role of hypoxia-inducible factors in carotid body (patho) physiology. J Physiol. 2018 08; 596(15):2977-2983.
    View in: PubMed
    Score: 0.140
  12. Hypoxia-inducible factors and hypertension: lessons from sleep apnea syndrome. J Mol Med (Berl). 2015 May; 93(5):473-80.
    View in: PubMed
    Score: 0.115
  13. Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respir Physiol Neurobiol. 2010 Nov 30; 174(1-2):156-61.
    View in: PubMed
    Score: 0.084
  14. Intermittent hypoxia activates peptidylglycine alpha-amidating monooxygenase in rat brain stem via reactive oxygen species-mediated proteolytic processing. J Appl Physiol (1985). 2009 Jan; 106(1):12-9.
    View in: PubMed
    Score: 0.073
  15. ROS signaling in systemic and cellular responses to chronic intermittent hypoxia. Antioxid Redox Signal. 2007 Sep; 9(9):1397-403.
    View in: PubMed
    Score: 0.068
  16. Acute intermittent hypoxia increases both phrenic and sympathetic nerve activities in the rat. Exp Physiol. 2007 Jan; 92(1):87-97.
    View in: PubMed
    Score: 0.065
  17. Selected Contribution: Improved anoxic tolerance in rat diaphragm following intermittent hypoxia. J Appl Physiol (1985). 2001 Jun; 90(6):2508-13.
    View in: PubMed
    Score: 0.044
  18. Impairment of pancreatic ß-cell function by chronic intermittent hypoxia. Exp Physiol. 2013 Sep; 98(9):1376-85.
    View in: PubMed
    Score: 0.025
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.