The University of Chicago Header Logo

Connection

Co-Authors

This is a "connection" page, showing publications co-authored by Nanduri R. Prabhakar and Jayasri Nanduri.
Connection Strength

19.335
  1. Carotid body hypersensitivity in intermittent hypoxia and obtructive sleep apnoea. J Physiol. 2023 Dec; 601(24):5481-5494.
    View in: PubMed
    Score: 0.898
  2. Adaptive cardiorespiratory changes to chronic continuous and intermittent hypoxia. Handb Clin Neurol. 2022; 188:103-123.
    View in: PubMed
    Score: 0.819
  3. Lysine demethylase KDM6B regulates HIF-1a-mediated systemic and cellular responses to intermittent hypoxia. Physiol Genomics. 2021 09 01; 53(9):385-394.
    View in: PubMed
    Score: 0.794
  4. Hypoxia-inducible factors and obstructive sleep apnea. J Clin Invest. 2020 10 01; 130(10):5042-5051.
    View in: PubMed
    Score: 0.751
  5. Recent advances in understanding the physiology of hypoxic sensing by the carotid body. F1000Res. 2018; 7.
    View in: PubMed
    Score: 0.662
  6. Neural Activation of Molecular Circuitry in Intermittent Hypoxia. Curr Opin Physiol. 2019 Feb; 7:9-14.
    View in: PubMed
    Score: 0.661
  7. Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia. Cell Tissue Res. 2018 05; 372(2):427-431.
    View in: PubMed
    Score: 0.627
  8. DNA methylation in the central and efferent limbs of the chemoreflex requires carotid body neural activity. J Physiol. 2018 08; 596(15):3087-3100.
    View in: PubMed
    Score: 0.621
  9. Immunohistochemistry of the Carotid Body. Methods Mol Biol. 2018; 1742:155-166.
    View in: PubMed
    Score: 0.620
  10. Epigenetic changes by DNA methylation in chronic and intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol. 2017 Dec 01; 313(6):L1096-L1100.
    View in: PubMed
    Score: 0.605
  11. Epigenetic regulation of redox state mediates persistent cardiorespiratory abnormalities after long-term intermittent hypoxia. J Physiol. 2017 01 01; 595(1):63-77.
    View in: PubMed
    Score: 0.569
  12. Peripheral chemoreception and arterial pressure responses to intermittent hypoxia. Compr Physiol. 2015 Apr; 5(2):561-77.
    View in: PubMed
    Score: 0.513
  13. Hypoxia-inducible factors and hypertension: lessons from sleep apnea syndrome. J Mol Med (Berl). 2015 May; 93(5):473-80.
    View in: PubMed
    Score: 0.511
  14. HIF-1a activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase. PLoS One. 2015; 10(3):e0119762.
    View in: PubMed
    Score: 0.510
  15. Epigenetic Regulation of Carotid Body Oxygen Sensing: Clinical Implications. Adv Exp Med Biol. 2015; 860:1-8.
    View in: PubMed
    Score: 0.504
  16. Xanthine oxidase mediates hypoxia-inducible factor-2a degradation by intermittent hypoxia. PLoS One. 2013; 8(10):e75838.
    View in: PubMed
    Score: 0.462
  17. Developmental programming of O(2) sensing by neonatal intermittent hypoxia via epigenetic mechanisms. Respir Physiol Neurobiol. 2013 Jan 01; 185(1):105-9.
    View in: PubMed
    Score: 0.426
  18. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proc Natl Acad Sci U S A. 2012 Feb 14; 109(7):2515-20.
    View in: PubMed
    Score: 0.410
  19. Intermittent hypoxia augments acute hypoxic sensing via HIF-mediated ROS. Respir Physiol Neurobiol. 2010 Dec 31; 174(3):230-4.
    View in: PubMed
    Score: 0.374
  20. Intermittent hypoxia-mediated plasticity of acute O2 sensing requires altered red-ox regulation by HIF-1 and HIF-2. Ann N Y Acad Sci. 2009 Oct; 1177:162-8.
    View in: PubMed
    Score: 0.350
  21. Hypoxia inhibits maturation and trafficking of hERG K(+) channel protein: Role of Hsp90 and ROS. Biochem Biophys Res Commun. 2009 Oct 16; 388(2):212-6.
    View in: PubMed
    Score: 0.346
  22. Intermittent hypoxia degrades HIF-2alpha via calpains resulting in oxidative stress: implications for recurrent apnea-induced morbidities. Proc Natl Acad Sci U S A. 2009 Jan 27; 106(4):1199-204.
    View in: PubMed
    Score: 0.333
  23. Transcriptional responses to intermittent hypoxia. Respir Physiol Neurobiol. 2008 Dec 10; 164(1-2):277-81.
    View in: PubMed
    Score: 0.331
  24. Mitochondrial reactive oxygen species mediate hypoxic down-regulation of hERG channel protein. Biochem Biophys Res Commun. 2008 Aug 22; 373(2):309-14.
    View in: PubMed
    Score: 0.320
  25. Reactive Oxygen species dependent increase in H3K27 acetylation by intermittent hypoxia is regulated by H3S28 phosphorylation. bioRxiv. 2024 Sep 09.
    View in: PubMed
    Score: 0.247
  26. Transcriptomic Analysis of Postnatal Rat Carotid Body Development. Genes (Basel). 2024 02 27; 15(3).
    View in: PubMed
    Score: 0.238
  27. P300/CBP Regulates HIF-1-Dependent Sympathetic Activation and Hypertension by Intermittent Hypoxia. Am J Respir Cell Mol Biol. 2024 Feb; 70(2):110-118.
    View in: PubMed
    Score: 0.236
  28. Correction: Hypoxia induced hERG trafficking defect linked to cell cycle arrest in SH-SY5Y cells. PLoS One. 2024; 19(1):e0297301.
    View in: PubMed
    Score: 0.235
  29. Hypoxia sensing requires H2S-dependent persulfidation of olfactory receptor 78. Sci Adv. 2023 07 07; 9(27):eadf3026.
    View in: PubMed
    Score: 0.227
  30. Carotid body responses to O2 and CO2 in hypoxia-tolerant naked mole rats. Acta Physiol (Oxf). 2022 10; 236(2):e13851.
    View in: PubMed
    Score: 0.212
  31. Protein phosphatase 1 regulates reactive oxygen species-dependent degradation of histone deacetylase 5 by intermittent hypoxia. Am J Physiol Cell Physiol. 2022 08 01; 323(2):C423-C431.
    View in: PubMed
    Score: 0.211
  32. Histone Deacetylase 5 Is an Early Epigenetic Regulator of Intermittent Hypoxia Induced Sympathetic Nerve Activation and Blood Pressure. Front Physiol. 2021; 12:688322.
    View in: PubMed
    Score: 0.196
  33. Role of olfactory receptor78 in carotid body-dependent sympathetic activation and hypertension in murine models of chronic intermittent hypoxia. J Neurophysiol. 2021 06 01; 125(6):2054-2067.
    View in: PubMed
    Score: 0.195
  34. Gaseous transmitter regulation of hypoxia-evoked catecholamine secretion from murine adrenal chromaffin cells. J Neurophysiol. 2021 05 01; 125(5):1533-1542.
    View in: PubMed
    Score: 0.194
  35. Hypoxia-inducible factor-1 mediates pancreatic ß-cell dysfunction by intermittent hypoxia. Am J Physiol Cell Physiol. 2020 11 01; 319(5):C922-C932.
    View in: PubMed
    Score: 0.187
  36. Olfactory receptor 78 participates in carotid body response to a wide range of low O2 levels but not severe hypoxia. J Neurophysiol. 2020 05 01; 123(5):1886-1895.
    View in: PubMed
    Score: 0.181
  37. Long-term facilitation of catecholamine secretion from adrenal chromaffin cells of neonatal rats by chronic intermittent hypoxia. J Neurophysiol. 2019 11 01; 122(5):1874-1883.
    View in: PubMed
    Score: 0.174
  38. Hypoxia induced hERG trafficking defect linked to cell cycle arrest in SH-SY5Y cells. PLoS One. 2019; 14(4):e0215905.
    View in: PubMed
    Score: 0.170
  39. Therapeutic Targeting of the Carotid Body for Treating Sleep Apnea in a Pre-clinical Mouse Model. Adv Exp Med Biol. 2018; 1071:109-114.
    View in: PubMed
    Score: 0.155
  40. Complementary roles of gasotransmitters CO and H2S in sleep apnea. Proc Natl Acad Sci U S A. 2017 02 07; 114(6):1413-1418.
    View in: PubMed
    Score: 0.145
  41. Cellular mechanisms associated with intermittent hypoxia. Essays Biochem. 2007; 43:91-104.
    View in: PubMed
    Score: 0.145
  42. H2S production by reactive oxygen species in the carotid body triggers hypertension in a rodent model of sleep apnea. Sci Signal. 2016 08 16; 9(441):ra80.
    View in: PubMed
    Score: 0.141
  43. Calpain activation by ROS mediates human ether-a-go-go-related gene protein degradation by intermittent hypoxia. Am J Physiol Cell Physiol. 2016 Mar 01; 310(5):C329-36.
    View in: PubMed
    Score: 0.134
  44. CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia. J Neurophysiol. 2016 Jan 01; 115(1):345-54.
    View in: PubMed
    Score: 0.134
  45. Protein kinase G-regulated production of H2S governs oxygen sensing. Sci Signal. 2015 Apr 21; 8(373):ra37.
    View in: PubMed
    Score: 0.129
  46. Neuromolecular mechanisms mediating the effects of chronic intermittent hypoxia on adrenal medulla. Respir Physiol Neurobiol. 2015 Apr; 209:115-9.
    View in: PubMed
    Score: 0.126
  47. Carotid Body Chemoreflex Mediates Intermittent Hypoxia-Induced Oxidative Stress in the Adrenal Medulla. Adv Exp Med Biol. 2015; 860:195-9.
    View in: PubMed
    Score: 0.126
  48. CaV3.2 T-type Ca²? channels in H2S-mediated hypoxic response of the carotid body. Am J Physiol Cell Physiol. 2015 Jan 15; 308(2):C146-54.
    View in: PubMed
    Score: 0.125
  49. Regulation of hypoxia-inducible factor-a isoforms and redox state by carotid body neural activity in rats. J Physiol. 2014 Sep 01; 592(17):3841-58.
    View in: PubMed
    Score: 0.122
  50. Intermittent hypoxia-induced endothelial barrier dysfunction requires ROS-dependent MAP kinase activation. Am J Physiol Cell Physiol. 2014 Apr 15; 306(8):C745-52.
    View in: PubMed
    Score: 0.118
  51. Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema. Proc Natl Acad Sci U S A. 2014 Jan 21; 111(3):1174-9.
    View in: PubMed
    Score: 0.118
  52. Role of oxidative stress-induced endothelin-converting enzyme activity in the alteration of carotid body function by chronic intermittent hypoxia. Exp Physiol. 2013 Nov; 98(11):1620-30.
    View in: PubMed
    Score: 0.114
  53. Impairment of pancreatic ß-cell function by chronic intermittent hypoxia. Exp Physiol. 2013 Sep; 98(9):1376-85.
    View in: PubMed
    Score: 0.113
  54. Mutual antagonism between hypoxia-inducible factors 1a and 2a regulates oxygen sensing and cardio-respiratory homeostasis. Proc Natl Acad Sci U S A. 2013 May 07; 110(19):E1788-96.
    View in: PubMed
    Score: 0.112
  55. Endogenous H2S is required for hypoxic sensing by carotid body glomus cells. Am J Physiol Cell Physiol. 2012 Nov 01; 303(9):C916-23.
    View in: PubMed
    Score: 0.106
  56. Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J Cell Physiol. 2011 Nov; 226(11):2925-33.
    View in: PubMed
    Score: 0.101
  57. Endothelin-1 mediates attenuated carotid baroreceptor activity by intermittent hypoxia. J Appl Physiol (1985). 2012 Jan; 112(1):187-96.
    View in: PubMed
    Score: 0.101
  58. Hypoxia-inducible factor 2a (HIF-2a) heterozygous-null mice exhibit exaggerated carotid body sensitivity to hypoxia, breathing instability, and hypertension. Proc Natl Acad Sci U S A. 2011 Feb 15; 108(7):3065-70.
    View in: PubMed
    Score: 0.096
  59. NADPH oxidase 2 mediates intermittent hypoxia-induced mitochondrial complex I inhibition: relevance to blood pressure changes in rats. Antioxid Redox Signal. 2011 Feb 15; 14(4):533-42.
    View in: PubMed
    Score: 0.094
  60. NADPH oxidase-dependent regulation of T-type Ca2+ channels and ryanodine receptors mediate the augmented exocytosis of catecholamines from intermittent hypoxia-treated neonatal rat chromaffin cells. J Neurosci. 2010 Aug 11; 30(32):10763-72.
    View in: PubMed
    Score: 0.093
  61. H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci U S A. 2010 Jun 08; 107(23):10719-24.
    View in: PubMed
    Score: 0.092
  62. NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J Neurosci. 2009 Apr 15; 29(15):4903-10.
    View in: PubMed
    Score: 0.085
  63. Long-term regulation of carotid body function: acclimatization and adaptation--invited article. Adv Exp Med Biol. 2009; 648:307-17.
    View in: PubMed
    Score: 0.083
  64. Reactive oxygen species-dependent endothelin signaling is required for augmented hypoxic sensory response of the neonatal carotid body by intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol. 2009 Mar; 296(3):R735-42.
    View in: PubMed
    Score: 0.083
  65. Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol. 2008 Dec; 217(3):674-85.
    View in: PubMed
    Score: 0.083
  66. ROS signaling in systemic and cellular responses to chronic intermittent hypoxia. Antioxid Redox Signal. 2007 Sep; 9(9):1397-403.
    View in: PubMed
    Score: 0.076
  67. Systemic, cellular and molecular analysis of chemoreflex-mediated sympathoexcitation by chronic intermittent hypoxia. Exp Physiol. 2007 Jan; 92(1):39-44.
    View in: PubMed
    Score: 0.072
  68. Ca2+/calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J Biol Chem. 2005 Feb 11; 280(6):4321-8.
    View in: PubMed
    Score: 0.063
  69. Gasotransmitter modulation of hypoglossal motoneuron activity. Elife. 2023 01 19; 12.
    View in: PubMed
    Score: 0.055
  70. Intermittent Hypoxia-Induced Activation of Endothelial Cells Is Mediated via Sympathetic Activation-Dependent Catecholamine Release. Front Physiol. 2021; 12:701995.
    View in: PubMed
    Score: 0.050
  71. TET1-mediated hydroxymethylation facilitates hypoxic gene induction in neuroblastoma. Cell Rep. 2014 Jun 12; 7(5):1343-1352.
    View in: PubMed
    Score: 0.030
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.