The University of Chicago Header Logo

Connection

Howard A. Shuman to Bacterial Proteins

This is a "connection" page, showing publications Howard A. Shuman has written about Bacterial Proteins.
Connection Strength

4.368
  1. Direct targeting of membrane fusion by SNARE mimicry: Convergent evolution of Legionella effectors. Proc Natl Acad Sci U S A. 2016 08 02; 113(31):8807-12.
    View in: PubMed
    Score: 0.368
  2. The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog. 2012 Feb; 8(2):e1002546.
    View in: PubMed
    Score: 0.271
  3. Cyclic diguanylate signaling proteins control intracellular growth of Legionella pneumophila. mBio. 2011 Jan 11; 2(1):e00316-10.
    View in: PubMed
    Score: 0.251
  4. ArgR-regulated genes are derepressed in the Legionella-containing vacuole. J Bacteriol. 2010 Sep; 192(17):4504-16.
    View in: PubMed
    Score: 0.242
  5. Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog. 2008 Aug 01; 4(8):e1000117.
    View in: PubMed
    Score: 0.212
  6. Host cell-dependent secretion and translocation of the LepA and LepB effectors of Legionella pneumophila. Cell Microbiol. 2007 Jul; 9(7):1660-71.
    View in: PubMed
    Score: 0.192
  7. Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol. 2005 Nov; 187(22):7716-26.
    View in: PubMed
    Score: 0.175
  8. Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc Natl Acad Sci U S A. 2005 Mar 29; 102(13):4866-71.
    View in: PubMed
    Score: 0.168
  9. The amoebae plate test implicates a paralogue of lpxB in the interaction of Legionella pneumophila with Acanthamoeba castellanii. Microbiology (Reading). 2005 Jan; 151(Pt 1):167-182.
    View in: PubMed
    Score: 0.165
  10. Legionella effectors that promote nonlytic release from protozoa. Science. 2004 Feb 27; 303(5662):1358-61.
    View in: PubMed
    Score: 0.156
  11. Virulence conversion of Legionella pneumophila by conjugal transfer of chromosomal DNA. J Bacteriol. 2003 Nov; 185(22):6712-8.
    View in: PubMed
    Score: 0.152
  12. The detergent-soluble maltose transporter is activated by maltose binding protein and verapamil. J Bacteriol. 2000 Feb; 182(4):993-1000.
    View in: PubMed
    Score: 0.118
  13. Relationships between a new type IV secretion system and the icm/dot virulence system of Legionella pneumophila. Mol Microbiol. 1999 Nov; 34(4):799-809.
    View in: PubMed
    Score: 0.116
  14. The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii. J Bacteriol. 1999 Aug; 181(16):4879-89.
    View in: PubMed
    Score: 0.114
  15. The ATP-binding cassette subunit of the maltose transporter MalK antagonizes MalT, the activator of the Escherichia coli mal regulon. Mol Microbiol. 1998 Nov; 30(3):535-46.
    View in: PubMed
    Score: 0.108
  16. Truncation of MalF results in lactose transport via the maltose transport system of Escherichia coli. J Biol Chem. 1998 Jan 23; 273(4):2435-44.
    View in: PubMed
    Score: 0.102
  17. Unliganded maltose-binding protein triggers lactose transport in an Escherichia coli mutant with an alteration in the maltose transport system. J Bacteriol. 1997 Dec; 179(24):7687-94.
    View in: PubMed
    Score: 0.101
  18. Identification of novel Coxiella burnetii Icm/Dot effectors and genetic analysis of their involvement in modulating a mitogen-activated protein kinase pathway. Infect Immun. 2014 Sep; 82(9):3740-52.
    View in: PubMed
    Score: 0.080
  19. The iron superoxide dismutase of Legionella pneumophila is essential for viability. J Bacteriol. 1994 Jun; 176(12):3790-9.
    View in: PubMed
    Score: 0.079
  20. Characterization of the structural requirements for assembly and nucleotide binding of an ATP-binding cassette transporter. The maltose transport system of Escherichia coli. J Biol Chem. 1993 Nov 05; 268(31):23685-96.
    View in: PubMed
    Score: 0.076
  21. Genetic analysis of periplasmic binding protein dependent transport in Escherichia coli. Each lobe of maltose-binding protein interacts with a different subunit of the MalFGK2 membrane transport complex. J Mol Biol. 1993 Oct 20; 233(4):659-70.
    View in: PubMed
    Score: 0.076
  22. A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur J Immunol. 2013 May; 43(5):1333-44.
    View in: PubMed
    Score: 0.073
  23. Antibiotics and UV radiation induce competence for natural transformation in Legionella pneumophila. J Bacteriol. 2011 Mar; 193(5):1114-21.
    View in: PubMed
    Score: 0.062
  24. The Legionella pneumophila major secretory protein, a protease, is not required for intracellular growth or cell killing. Infect Immun. 1990 Aug; 58(8):2585-92.
    View in: PubMed
    Score: 0.061
  25. The perplexing functions and surprising origins of Legionella pneumophila type IV secretion effectors. Cell Microbiol. 2009 Oct; 11(10):1435-43.
    View in: PubMed
    Score: 0.056
  26. SigmaS controls multiple pathways associated with intracellular multiplication of Legionella pneumophila. J Bacteriol. 2009 Apr; 191(8):2461-73.
    View in: PubMed
    Score: 0.055
  27. Loss of RNase R induces competence development in Legionella pneumophila. J Bacteriol. 2008 Dec; 190(24):8126-36.
    View in: PubMed
    Score: 0.054
  28. Overproduction of MalK protein prevents expression of the Escherichia coli mal regulon. J Bacteriol. 1988 Oct; 170(10):4598-602.
    View in: PubMed
    Score: 0.054
  29. Allele-specific malE mutations that restore interactions between maltose-binding protein and the inner-membrane components of the maltose transport system. J Mol Biol. 1988 Aug 20; 202(4):809-22.
    View in: PubMed
    Score: 0.053
  30. Comparative sequence analysis of the icm/dot genes in Legionella. Plasmid. 2004 Mar; 51(2):127-47.
    View in: PubMed
    Score: 0.039
  31. Disulfide cross-linking reveals a site of stable interaction between C-terminal regulatory domains of the two MalK subunits in the maltose transport complex. J Biol Chem. 2003 Sep 12; 278(37):35265-71.
    View in: PubMed
    Score: 0.037
  32. Active transport of maltose in Escherichia coli K12. Role of the periplasmic maltose-binding protein and evidence for a substrate recognition site in the cytoplasmic membrane. J Biol Chem. 1982 May 25; 257(10):5455-61.
    View in: PubMed
    Score: 0.034
  33. The maltose-maltodextrin transport system of Escherichia coli. Ann Microbiol (Paris). 1982 Jan; 133A(1):153-9.
    View in: PubMed
    Score: 0.034
  34. Icm/dot-dependent upregulation of phagocytosis by Legionella pneumophila. Mol Microbiol. 2001 Nov; 42(3):603-17.
    View in: PubMed
    Score: 0.033
  35. Identification of the malK gene product. A peripheral membrane component of the Escherichia coli maltose transport system. J Biol Chem. 1981 Jan 25; 256(2):560-2.
    View in: PubMed
    Score: 0.031
  36. The use of gene fusions of study bacterial transport proteins. J Membr Biol. 1981; 61(1):1-11.
    View in: PubMed
    Score: 0.031
  37. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections. Sci Transl Med. 2018 09 26; 10(460).
    View in: PubMed
    Score: 0.027
  38. Maltose transport in Escherichia coli: mutations that uncouple ATP hydrolysis from transport. Methods Enzymol. 1998; 292:30-9.
    View in: PubMed
    Score: 0.025
  39. Crystal structures and solution conformations of a dominant-negative mutant of Escherichia coli maltose-binding protein. J Mol Biol. 1996 Nov 29; 264(2):364-76.
    View in: PubMed
    Score: 0.024
  40. The inhibition of maltose transport by the unliganded form of the maltose-binding protein of Escherichia coli: experimental findings and mathematical treatment. J Theor Biol. 1995 Nov 21; 177(2):171-9.
    View in: PubMed
    Score: 0.022
  41. The effect of nalidixic acid on the expression of some genes in Escherichia coli K-12. Biochem Biophys Res Commun. 1975 May 05; 64(1):204-9.
    View in: PubMed
    Score: 0.021
  42. Mathematical treatment of the kinetics of binding protein dependent transport systems reveals that both the substrate loaded and unloaded binding proteins interact with the membrane components. J Theor Biol. 1995 Jan 07; 172(1):83-94.
    View in: PubMed
    Score: 0.021
  43. The Legionella pneumophila icm locus: a set of genes required for intracellular multiplication in human macrophages. Mol Microbiol. 1994 Nov; 14(4):797-808.
    View in: PubMed
    Score: 0.020
  44. Mutations that alter the transmembrane signalling pathway in an ATP binding cassette (ABC) transporter. EMBO J. 1994 Apr 01; 13(7):1752-9.
    View in: PubMed
    Score: 0.020
  45. Tinkering with transporters: periplasmic binding protein-dependent maltose transport in E. coli. J Bioenerg Biomembr. 1993 Dec; 25(6):613-20.
    View in: PubMed
    Score: 0.019
  46. Interaction between maltose-binding protein and the membrane-associated maltose transporter complex in Escherichia coli. Mol Microbiol. 1992 Aug; 6(15):2033-40.
    View in: PubMed
    Score: 0.017
  47. Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. Proc Natl Acad Sci U S A. 1992 Mar 15; 89(6):2360-4.
    View in: PubMed
    Score: 0.017
  48. The overlapping host responses to bacterial cyclic dinucleotides. Microbes Infect. 2012 Feb; 14(2):188-97.
    View in: PubMed
    Score: 0.016
  49. The activities of the Escherichia coli MalK protein in maltose transport, regulation, and inducer exclusion can be separated by mutations. J Bacteriol. 1991 Apr; 173(7):2180-6.
    View in: PubMed
    Score: 0.016
  50. An immunoprotective molecule, the major secretory protein of Legionella pneumophila, is not a virulence factor in a guinea pig model of Legionnaires' disease. J Clin Invest. 1990 Sep; 86(3):817-24.
    View in: PubMed
    Score: 0.015
  51. Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc Natl Acad Sci U S A. 2010 Apr 20; 107(16):7533-8.
    View in: PubMed
    Score: 0.015
  52. Intracellular bacteria encode inhibitory SNARE-like proteins. PLoS One. 2009 Oct 12; 4(10):e7375.
    View in: PubMed
    Score: 0.014
  53. Chemical genetics reveals bacterial and host cell functions critical for type IV effector translocation by Legionella pneumophila. PLoS Pathog. 2009 Jul; 5(7):e1000501.
    View in: PubMed
    Score: 0.014
  54. Use of gene fusions to study outer membrane protein localization in Escherichia coli. Proc Natl Acad Sci U S A. 1977 Dec; 74(12):5411-5.
    View in: PubMed
    Score: 0.006
  55. Intergration of the receptor for bacteriophage lambda in the outer membrane of Escherichia coli: coupling with cell division. J Bacteriol. 1975 Apr; 122(1):295-301.
    View in: PubMed
    Score: 0.005
  56. Sites within gene lacZ of Escherichia coli for formation of active hybrid beta-galactosidase molecules. J Bacteriol. 1979 Jul; 139(1):13-8.
    View in: PubMed
    Score: 0.002
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.