The University of Chicago Header Logo

Connection

Howard A. Shuman to Mutation

This is a "connection" page, showing publications Howard A. Shuman has written about Mutation.
Connection Strength

0.542
  1. Characterization of a new region required for macrophage killing by Legionella pneumophila. Infect Immun. 1997 Dec; 65(12):5057-66.
    View in: PubMed
    Score: 0.071
  2. Seeing red; the development of pON.mCherry, a broad-host range constitutive expression plasmid for Gram-negative bacteria. PLoS One. 2017; 12(3):e0173116.
    View in: PubMed
    Score: 0.067
  3. A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur J Immunol. 2013 May; 43(5):1333-44.
    View in: PubMed
    Score: 0.051
  4. Allele-specific malE mutations that restore interactions between maltose-binding protein and the inner-membrane components of the maltose transport system. J Mol Biol. 1988 Aug 20; 202(4):809-22.
    View in: PubMed
    Score: 0.037
  5. Isolation and characterization of auxotrophic mutants of Legionella pneumophila that fail to multiply in human monocytes. Infect Immun. 1988 Jun; 56(6):1449-55.
    View in: PubMed
    Score: 0.037
  6. The amoebae plate test implicates a paralogue of lpxB in the interaction of Legionella pneumophila with Acanthamoeba castellanii. Microbiology (Reading). 2005 Jan; 151(Pt 1):167-182.
    View in: PubMed
    Score: 0.029
  7. Legionella effectors that promote nonlytic release from protozoa. Science. 2004 Feb 27; 303(5662):1358-61.
    View in: PubMed
    Score: 0.027
  8. Icm/dot-dependent upregulation of phagocytosis by Legionella pneumophila. Mol Microbiol. 2001 Nov; 42(3):603-17.
    View in: PubMed
    Score: 0.023
  9. The ATP-binding cassette subunit of the maltose transporter MalK antagonizes MalT, the activator of the Escherichia coli mal regulon. Mol Microbiol. 1998 Nov; 30(3):535-46.
    View in: PubMed
    Score: 0.019
  10. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections. Sci Transl Med. 2018 09 26; 10(460).
    View in: PubMed
    Score: 0.019
  11. Early events in phagosome establishment are required for intracellular survival of Legionella pneumophila. Infect Immun. 1998 Sep; 66(9):4450-60.
    View in: PubMed
    Score: 0.019
  12. Truncation of MalF results in lactose transport via the maltose transport system of Escherichia coli. J Biol Chem. 1998 Jan 23; 273(4):2435-44.
    View in: PubMed
    Score: 0.018
  13. Unliganded maltose-binding protein triggers lactose transport in an Escherichia coli mutant with an alteration in the maltose transport system. J Bacteriol. 1997 Dec; 179(24):7687-94.
    View in: PubMed
    Score: 0.018
  14. Legionella pneumophila invasion of mononuclear phagocytes. Curr Top Microbiol Immunol. 1996; 209:99-112.
    View in: PubMed
    Score: 0.016
  15. Mutations that alter the transmembrane signalling pathway in an ATP binding cassette (ABC) transporter. EMBO J. 1994 Apr 01; 13(7):1752-9.
    View in: PubMed
    Score: 0.014
  16. The Legionella pneumophila major secretory protein, a protease, is not required for intracellular growth or cell killing. Infect Immun. 1990 Aug; 58(8):2585-92.
    View in: PubMed
    Score: 0.011
  17. Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc Natl Acad Sci U S A. 2010 Apr 20; 107(16):7533-8.
    View in: PubMed
    Score: 0.010
  18. Isolation of a Legionella pneumophila restriction mutant with increased ability to act as a recipient in heterospecific matings. J Bacteriol. 1989 Apr; 171(4):2238-40.
    View in: PubMed
    Score: 0.010
  19. Genetics of Legionella pneumophila. Microbiol Sci. 1988 Oct; 5(10):292-5.
    View in: PubMed
    Score: 0.009
  20. Transposition of bacteriophage Mu in the Legionnaires disease bacterium. Proc Natl Acad Sci U S A. 1987 Jul; 84(13):4645-9.
    View in: PubMed
    Score: 0.009
  21. Genetic evidence for substrate and periplasmic-binding-protein recognition by the MalF and MalG proteins, cytoplasmic membrane components of the Escherichia coli maltose transport system. J Bacteriol. 1985 Aug; 163(2):654-60.
    View in: PubMed
    Score: 0.008
  22. Identification of the malK gene product. A peripheral membrane component of the Escherichia coli maltose transport system. J Biol Chem. 1981 Jan 25; 256(2):560-2.
    View in: PubMed
    Score: 0.006
  23. Escherichia coli K-12 mutants that allow transport of maltose via the beta-galactoside transport system. J Bacteriol. 1979 Jan; 137(1):365-73.
    View in: PubMed
    Score: 0.005
  24. Dominant constitutive mutations in malT, the positive regulator gene of the maltose regulon in Escherichia coli. J Mol Biol. 1978 Sep 15; 124(2):359-71.
    View in: PubMed
    Score: 0.005
  25. Interaction between maltose-binding protein and the membrane-associated maltose transporter complex in Escherichia coli. Mol Microbiol. 1992 Aug; 6(15):2033-40.
    View in: PubMed
    Score: 0.003
  26. Sodium/proton antiport is required for growth of Escherichia coli at alkaline pH. Biochim Biophys Acta. 1989 May 19; 981(1):21-6.
    View in: PubMed
    Score: 0.002
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.