The University of Chicago Header Logo

Connection

Victor Mor-Avi to Middle Aged

This is a "connection" page, showing publications Victor Mor-Avi has written about Middle Aged.
Connection Strength

1.999
  1. Contrast-enhanced echocardiographic measurement of longitudinal strain: accuracy and its relationship with image quality. Int J Cardiovasc Imaging. 2020 Mar; 36(3):431-439.
    View in: PubMed
    Score: 0.047
  2. Echocardiographic evaluation of the effects of sacubitril-valsartan on vascular properties in heart failure patients. Int J Cardiovasc Imaging. 2020 Feb; 36(2):271-278.
    View in: PubMed
    Score: 0.047
  3. 3D echocardiographic global longitudinal strain can identify patients with mildly-to-moderately reduced ejection fraction at higher cardiovascular risk. Int J Cardiovasc Imaging. 2019 Sep; 35(9):1573-1579.
    View in: PubMed
    Score: 0.045
  4. Fusion of Three-Dimensional Echocardiographic Regional Myocardial Strain with Cardiac Computed Tomography for Noninvasive Evaluation of the Hemodynamic Impact of Coronary Stenosis in Patients with Chest Pain. J Am Soc Echocardiogr. 2018 06; 31(6):664-673.
    View in: PubMed
    Score: 0.042
  5. Invasive Validation of the Echocardiographic Assessment of Left Ventricular Filling Pressures Using the 2016 Diastolic Guidelines: Head-to-Head Comparison with the 2009 Guidelines. J Am Soc Echocardiogr. 2018 01; 31(1):79-88.
    View in: PubMed
    Score: 0.041
  6. Non-invasive assessment of the haemodynamic significance of coronary stenosis using fusion of cardiac computed tomography and 3D echocardiography. Eur Heart J Cardiovasc Imaging. 2017 Jun 01; 18(6):670-680.
    View in: PubMed
    Score: 0.040
  7. Atrial-focused views improve the accuracy of two-dimensional echocardiographic measurements of the left and right atrial volumes: a contribution to the increase in normal values in the guidelines update. Int J Cardiovasc Imaging. 2017 Feb; 33(2):209-218.
    View in: PubMed
    Score: 0.038
  8. Three-dimensional quantification of myocardial perfusion during regadenoson stress computed tomography. Eur J Radiol. 2016 May; 85(5):885-92.
    View in: PubMed
    Score: 0.037
  9. Objective selection of short-axis slices for automated quantification of left ventricular size and function by cardiovascular magnetic resonance. Clin Imaging. 2016 Jul-Aug; 40(4):617-23.
    View in: PubMed
    Score: 0.037
  10. Quantification of left ventricular size and function using contrast-enhanced real-time 3D imaging with power modulation: comparison with cardiac MRI. Ultrasound Med Biol. 2012 Nov; 38(11):1853-8.
    View in: PubMed
    Score: 0.029
  11. Real-time 3D echocardiographic quantification of left atrial volume: multicenter study for validation with CMR. JACC Cardiovasc Imaging. 2012 Aug; 5(8):769-77.
    View in: PubMed
    Score: 0.029
  12. Effects of frame rate on three-dimensional speckle-tracking-based measurements of myocardial deformation. J Am Soc Echocardiogr. 2012 Sep; 25(9):978-85.
    View in: PubMed
    Score: 0.028
  13. Quantitative three-dimensional evaluation of myocardial perfusion during regadenoson stress using multidetector computed tomography. J Comput Assist Tomogr. 2012 Jul-Aug; 36(4):443-9.
    View in: PubMed
    Score: 0.028
  14. Three-dimensional echocardiographic quantitative evaluation of left ventricular diastolic function using analysis of chamber volume and myocardial deformation. Int J Cardiovasc Imaging. 2013 Feb; 29(2):285-93.
    View in: PubMed
    Score: 0.028
  15. Three-dimensional analysis of interventricular septal curvature from cardiac magnetic resonance images for the evaluation of patients with pulmonary hypertension. Int J Cardiovasc Imaging. 2012 Jun; 28(5):1073-85.
    View in: PubMed
    Score: 0.027
  16. Detection of myocardial perfusion abnormalities using ultra-low radiation dose regadenoson stress multidetector computed tomography. J Cardiovasc Comput Tomogr. 2011 Jul-Aug; 5(4):247-54.
    View in: PubMed
    Score: 0.026
  17. Three-dimensional analysis of regional left ventricular endocardial curvature from cardiac magnetic resonance images. Magn Reson Imaging. 2011 May; 29(4):516-24.
    View in: PubMed
    Score: 0.026
  18. Imaging the forgotten chamber: is the devil in the boundary? J Am Soc Echocardiogr. 2010 Feb; 23(2):141-3.
    View in: PubMed
    Score: 0.024
  19. Quantitative evaluation of regional left ventricular function using three-dimensional speckle tracking echocardiography in patients with and without heart disease. Am J Cardiol. 2009 Dec 15; 104(12):1755-62.
    View in: PubMed
    Score: 0.024
  20. Volumetric quantification of myocardial perfusion using analysis of multi-detector computed tomography 3D datasets: comparison with nuclear perfusion imaging. Eur Radiol. 2010 Feb; 20(2):337-47.
    View in: PubMed
    Score: 0.023
  21. Combined assessment of coronary anatomy and myocardial perfusion using multidetector computed tomography for the evaluation of coronary artery disease. Am J Cardiol. 2009 Jun 01; 103(11):1487-94.
    View in: PubMed
    Score: 0.023
  22. Value of multidetector computed tomography evaluation of myocardial perfusion in the assessment of ischemic heart disease: comparison with nuclear perfusion imaging. Eur Radiol. 2009 Aug; 19(8):1897-905.
    View in: PubMed
    Score: 0.023
  23. Automated frame-by-frame endocardial border detection from cardiac magnetic resonance images for quantitative assessment of left ventricular function: validation and clinical feasibility. J Magn Reson Imaging. 2009 Mar; 29(3):560-8.
    View in: PubMed
    Score: 0.023
  24. Echocardiographic quantification of left ventricular volume: what can we do better? J Am Soc Echocardiogr. 2008 Sep; 21(9):998-1000.
    View in: PubMed
    Score: 0.022
  25. Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: multicenter study for validation with magnetic resonance imaging and investigation of sources of error. JACC Cardiovasc Imaging. 2008 Jul; 1(4):413-23.
    View in: PubMed
    Score: 0.022
  26. Multidetector computed tomography evaluation of left ventricular volumes: sources of error and guidelines for their minimization. J Cardiovasc Comput Tomogr. 2008 Jul-Aug; 2(4):222-30.
    View in: PubMed
    Score: 0.021
  27. Value of vasodilator stress myocardial contrast echocardiography and magnetic resonance imaging for the differential diagnosis of ischemic versus nonischemic cardiomyopathy. J Am Soc Echocardiogr. 2008 May; 21(5):425-32.
    View in: PubMed
    Score: 0.021
  28. Volumetric analysis of regional left ventricular function with real-time three-dimensional echocardiography: validation by magnetic resonance and clinical utility testing. Heart. 2007 May; 93(5):572-8.
    View in: PubMed
    Score: 0.019
  29. Quantification of regional left ventricular wall motion from real-time 3-dimensional echocardiography in patients with poor acoustic windows: effects of contrast enhancement tested against cardiac magnetic resonance. J Am Soc Echocardiogr. 2006 Jul; 19(7):886-93.
    View in: PubMed
    Score: 0.019
  30. Automated interpretation of regional left ventricular wall motion from cardiac magnetic resonance images. J Cardiovasc Magn Reson. 2006; 8(3):427-33.
    View in: PubMed
    Score: 0.018
  31. Quantitative echocardiographic evaluation of myocardial perfusion using interrupted contrast infusion technique: in vivo validation studies and feasibility in human beings. J Am Soc Echocardiogr. 2005 Dec; 18(12):1304-11.
    View in: PubMed
    Score: 0.018
  32. Volumetric quantification of global and regional left ventricular function from real-time three-dimensional echocardiographic images. Circulation. 2005 Aug 23; 112(8):1161-70.
    View in: PubMed
    Score: 0.018
  33. Improved quantification of left ventricular volumes and mass based on endocardial and epicardial surface detection from cardiac MR images using level set models. J Cardiovasc Magn Reson. 2005; 7(3):595-602.
    View in: PubMed
    Score: 0.017
  34. Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging. Circulation. 2004 Sep 28; 110(13):1814-8.
    View in: PubMed
    Score: 0.017
  35. The role of still-frame parametric imaging in magnetic resonance assessment of left ventricular wall motion by non-cardiologists. J Cardiovasc Magn Reson. 2004; 6(3):619-25.
    View in: PubMed
    Score: 0.016
  36. Impact of wideband cardiac magnetic resonance on diagnosis, decision-making and outcomes in patients with implantable cardioverter defibrillators. Eur Heart J Cardiovasc Imaging. 2023 01 23; 24(2):181-189.
    View in: PubMed
    Score: 0.015
  37. Age-, Sex-, and Race-Based Normal Values for Left Ventricular Circumferential Strain from the World Alliance Societies of Echocardiography Study. J Am Soc Echocardiogr. 2023 06; 36(6):581-590.e1.
    View in: PubMed
    Score: 0.015
  38. Normal Values of Left Ventricular Mass by Two-Dimensional and Three-Dimensional Echocardiography: Results from the World Alliance Societies of Echocardiography Normal Values Study. J Am Soc Echocardiogr. 2023 05; 36(5):533-542.e1.
    View in: PubMed
    Score: 0.015
  39. Improvement in echocardiographic evaluation of left ventricular wall motion using still-frame parametric imaging. J Am Soc Echocardiogr. 2002 Sep; 15(9):926-34.
    View in: PubMed
    Score: 0.014
  40. Relation of Myocardial Perfusion Reserve and Left Ventricular Ejection Fraction in Ischemic and Nonischemic Cardiomyopathy. Am J Cardiol. 2022 07 01; 174:143-150.
    View in: PubMed
    Score: 0.014
  41. Prevalence of Right Atrial Impairment and Association with Outcomes in Cardiac Amyloidosis. J Am Soc Echocardiogr. 2022 08; 35(8):829-835.e1.
    View in: PubMed
    Score: 0.014
  42. Objective assessment of left ventricular wall motion from contrast-enhanced power modulation images. J Am Soc Echocardiogr. 2002 Feb; 15(2):118-28.
    View in: PubMed
    Score: 0.014
  43. Normal Values of Left Ventricular Size and Function on Three-Dimensional Echocardiography: Results of the World Alliance Societies of Echocardiography Study. J Am Soc Echocardiogr. 2022 05; 35(5):449-459.
    View in: PubMed
    Score: 0.014
  44. Normal Values of Aortic Root Size According to Age, Sex, and Race: Results of the World Alliance of Societies of Echocardiography Study. J Am Soc Echocardiogr. 2022 03; 35(3):267-274.
    View in: PubMed
    Score: 0.014
  45. Two-Dimensional Echocardiographic Right Ventricular Size and Systolic Function Measurements Stratified by Sex, Age, and Ethnicity: Results of the World Alliance of Societies of Echocardiography Study. J Am Soc Echocardiogr. 2021 11; 34(11):1148-1157.e1.
    View in: PubMed
    Score: 0.013
  46. Deep Learning-Based Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction: A Point-of-Care Solution. Circ Cardiovasc Imaging. 2021 06; 14(6):e012293.
    View in: PubMed
    Score: 0.013
  47. Normal Values of Cardiac Output and Stroke Volume According to Measurement Technique, Age, Sex, and Ethnicity: Results of the World Alliance of Societies of Echocardiography Study. J Am Soc Echocardiogr. 2021 10; 34(10):1077-1085.e1.
    View in: PubMed
    Score: 0.013
  48. Short-Term Ventricular Structural Changes Following Left Ventricular Assist Device Implantation. ASAIO J. 2021 02 01; 67(2):169-176.
    View in: PubMed
    Score: 0.013
  49. Normal values of regional left ventricular endocardial motion: multicenter color kinesis study. Am J Physiol Heart Circ Physiol. 2000 Nov; 279(5):H2464-76.
    View in: PubMed
    Score: 0.013
  50. Validation of non-contrast multiple overlapping thin-slab 4D-flow cardiac magnetic resonance imaging. Magn Reson Imaging. 2020 12; 74:223-231.
    View in: PubMed
    Score: 0.013
  51. Myocardial strain analysis of the right ventricle: comparison of different cardiovascular magnetic resonance and echocardiographic techniques. J Cardiovasc Magn Reson. 2020 07 23; 22(1):51.
    View in: PubMed
    Score: 0.012
  52. Prevalence of mitral annular disjunction in patients with mitral valve prolapse and severe regurgitation. Int J Cardiovasc Imaging. 2020 Jul; 36(7):1363-1370.
    View in: PubMed
    Score: 0.012
  53. Regional myocardial strain by cardiac magnetic resonance feature tracking for detection of scar in ischemic heart disease. Magn Reson Imaging. 2020 05; 68:190-196.
    View in: PubMed
    Score: 0.012
  54. Machine learning based quantification of ejection and filling parameters by fully automated dynamic measurement of left ventricular volumes from cardiac magnetic resonance images. Magn Reson Imaging. 2020 04; 67:28-32.
    View in: PubMed
    Score: 0.012
  55. Quantitative detection of changes in regional wall motion using real time strain-encoded cardiovascular magnetic resonance. Magn Reson Imaging. 2020 02; 66:193-198.
    View in: PubMed
    Score: 0.012
  56. Three-dimensional echocardiography investigation of the mechanisms of tricuspid annular dilatation. Int J Cardiovasc Imaging. 2020 Jan; 36(1):33-43.
    View in: PubMed
    Score: 0.012
  57. Echocardiography and cardiovascular magnetic resonance based evaluation of myocardial strain and relationship with late gadolinium enhancement. J Cardiovasc Magn Reson. 2019 08 08; 21(1):46.
    View in: PubMed
    Score: 0.012
  58. Impact of Severe Pulmonary Arterial Hypertension on the Left Heart and Prognostic Implications. J Am Soc Echocardiogr. 2019 09; 32(9):1128-1137.
    View in: PubMed
    Score: 0.012
  59. Machine Learning-Based Three-Dimensional Echocardiographic Quantification of Right Ventricular Size and Function: Validation Against Cardiac Magnetic Resonance. J Am Soc Echocardiogr. 2019 08; 32(8):969-977.
    View in: PubMed
    Score: 0.012
  60. Hemodynamic impact of coronary stenosis using computed tomography: comparison between noninvasive fractional flow reserve and 3D fusion of coronary angiography with stress myocardial perfusion. Int J Cardiovasc Imaging. 2019 Sep; 35(9):1733-1743.
    View in: PubMed
    Score: 0.011
  61. Machine learning based automated dynamic quantification of left heart chamber volumes. Eur Heart J Cardiovasc Imaging. 2019 May 01; 20(5):541-549.
    View in: PubMed
    Score: 0.011
  62. Improved visualization of the coronary arteries using motion correction during vasodilator stress CT myocardial perfusion imaging. Eur J Radiol. 2019 May; 114:1-5.
    View in: PubMed
    Score: 0.011
  63. Outflow Cannula Systolic Slope in Patients With Left Ventricular Assist Devices: A Novel Marker of Myocardial Contractility. ASAIO J. 2019 02; 65(2):160-166.
    View in: PubMed
    Score: 0.011
  64. Feasibility of Cardiac Magnetic Resonance Wideband Protocol in Patients With Implantable Cardioverter Defibrillators and Its Utility for Defining Scar. Am J Cardiol. 2019 04 15; 123(8):1329-1335.
    View in: PubMed
    Score: 0.011
  65. Comparison Between Four-Chamber and Right Ventricular-Focused Views for the Quantitative Evaluation of Right Ventricular Size and Function. J Am Soc Echocardiogr. 2019 04; 32(4):484-494.
    View in: PubMed
    Score: 0.011
  66. Automated, machine learning-based, 3D echocardiographic quantification of left ventricular mass. Echocardiography. 2019 02; 36(2):312-319.
    View in: PubMed
    Score: 0.011
  67. Regression of Cardiac Amyloidosis Following Autologous Stem Cell Transplant in Patients With Atypical Magnetic Resonance Imaging Findings. Rev Esp Cardiol (Engl Ed). 2019 Sep; 72(9):790-792.
    View in: PubMed
    Score: 0.011
  68. Echocardiographic Assessment of the Tricuspid Annulus: The Effects of the Third Dimension and Measurement Methodology. J Am Soc Echocardiogr. 2019 02; 32(2):238-247.
    View in: PubMed
    Score: 0.011
  69. Diagnosis of Isolated Cleft Mitral Valve Using Three-Dimensional Echocardiography. J Am Soc Echocardiogr. 2018 11; 31(11):1161-1167.
    View in: PubMed
    Score: 0.011
  70. Acoustic quantification indexes of left ventricular size and function: effects of signal averaging. J Am Soc Echocardiogr. 1998 Aug; 11(8):792-802.
    View in: PubMed
    Score: 0.011
  71. Peak left atrial strain as a single measure for the non-invasive assessment of left ventricular filling pressures. Int J Cardiovasc Imaging. 2019 Jan; 35(1):23-32.
    View in: PubMed
    Score: 0.011
  72. Residual native left ventricular function optimization using quantitative 3D echocardiographic assessment of rotational mechanics in patients with left ventricular assist devices. Echocardiography. 2018 10; 35(10):1606-1615.
    View in: PubMed
    Score: 0.011
  73. Myocardial perfusion reserve and global longitudinal strain as potential markers of coronary allograft vasculopathy in late-stage orthotopic heart transplantation. Int J Cardiovasc Imaging. 2018 Oct; 34(10):1607-1617.
    View in: PubMed
    Score: 0.011
  74. Three-dimensional echocardiographic quantification of the left-heart chambers using an automated adaptive analytics algorithm: multicentre validation study. Eur Heart J Cardiovasc Imaging. 2018 01 01; 19(1):47-58.
    View in: PubMed
    Score: 0.010
  75. 3-Dimensional Echocardiographic Analysis of the Tricuspid Annulus Provides New Insights Into Tricuspid Valve Geometry and Dynamics. JACC Cardiovasc Imaging. 2019 03; 12(3):401-412.
    View in: PubMed
    Score: 0.010
  76. 2D and 3D Echocardiography-Derived Indices of Left Ventricular Function and Shape: Relationship With Mortality. JACC Cardiovasc Imaging. 2018 11; 11(11):1569-1579.
    View in: PubMed
    Score: 0.010
  77. Three-Dimensional Echocardiographic Automated Quantification of Left Heart Chamber Volumes Using an Adaptive Analytics Algorithm: Feasibility and Impact of Image Quality in Nonselected Patients. J Am Soc Echocardiogr. 2017 Sep; 30(9):879-885.
    View in: PubMed
    Score: 0.010
  78. 3D Morphological Changes in LV and RV During LVAD Ramp Studies. JACC Cardiovasc Imaging. 2018 02; 11(2 Pt 1):159-169.
    View in: PubMed
    Score: 0.010
  79. LA Strain for Categorization of LV Diastolic Dysfunction. JACC Cardiovasc Imaging. 2017 07; 10(7):735-743.
    View in: PubMed
    Score: 0.010
  80. Multi-parametric quantification of tricuspid regurgitation using cardiovascular magnetic resonance: A comparison to echocardiography. Eur J Radiol. 2017 Jan; 86:213-220.
    View in: PubMed
    Score: 0.010
  81. Improved detection of myocardial damage in sarcoidosis using longitudinal strain in patients with preserved left ventricular ejection fraction. Echocardiography. 2016 Sep; 33(9):1344-52.
    View in: PubMed
    Score: 0.010
  82. Transthoracic 3D Echocardiographic Left Heart Chamber Quantification Using an Automated Adaptive Analytics Algorithm. JACC Cardiovasc Imaging. 2016 07; 9(7):769-782.
    View in: PubMed
    Score: 0.009
  83. Screening for Outflow Cannula Malfunction of Left Ventricular Assist Devices (LVADs) With the Use of Doppler Echocardiography: New LVAD-Specific Reference Values for Contemporary Devices. J Card Fail. 2016 Oct; 22(10):808-14.
    View in: PubMed
    Score: 0.009
  84. Echocardiographic quantification of regional left ventricular wall motion with color kinesis. Circulation. 1996 May 15; 93(10):1877-85.
    View in: PubMed
    Score: 0.009
  85. Continuing Medical Education Activity in Echocardiography: May 2016. Echocardiography. 2016 May; 33(5):695.
    View in: PubMed
    Score: 0.009
  86. Simultaneous Longitudinal Strain in All 4 Cardiac Chambers: A Novel Method for Comprehensive Functional Assessment of the Heart. Circ Cardiovasc Imaging. 2016 Mar; 9(3):e003895.
    View in: PubMed
    Score: 0.009
  87. Tricuspid regurgitation progression and regression in pulmonary arterial hypertension: implications for right ventricular and tricuspid valve apparatus geometry and patients outcome. Eur Heart J Cardiovasc Imaging. 2017 Jan; 18(1):86-94.
    View in: PubMed
    Score: 0.009
  88. Right Heart Involvement in Patients with Sarcoidosis. Echocardiography. 2016 May; 33(5):734-41.
    View in: PubMed
    Score: 0.009
  89. Role of Perfusion at Rest in the Diagnosis of Myocardial Infarction Using Vasodilator Stress Cardiovascular Magnetic Resonance. Am J Cardiol. 2016 Apr 01; 117(7):1072-7.
    View in: PubMed
    Score: 0.009
  90. Prognosis of Myocardial Damage in Sarcoidosis Patients With Preserved Left Ventricular Ejection Fraction: Risk Stratification Using Cardiovascular Magnetic Resonance. Circ Cardiovasc Imaging. 2016 Jan; 9(1):e003738.
    View in: PubMed
    Score: 0.009
  91. Elongation of chordae tendineae as an adaptive process to reduce mitral regurgitation in functional mitral regurgitation. Eur Heart J Cardiovasc Imaging. 2016 May; 17(5):500-9.
    View in: PubMed
    Score: 0.009
  92. Echocardiographic Diagnosis of Acute Pulmonary Embolism in Patients with McConnell's Sign. Echocardiography. 2016 May; 33(5):696-702.
    View in: PubMed
    Score: 0.009
  93. Large high-density lipoprotein particle number is independently associated with microvascular function in patients with well-controlled low-density lipoprotein concentration: A vasodilator stress magnetic resonance perfusion study. J Clin Lipidol. 2016 Mar-Apr; 10(2):314-22.
    View in: PubMed
    Score: 0.009
  94. Comprehensive Two-Dimensional Interrogation of the Tricuspid Valve Using Knowledge Derived from Three-Dimensional Echocardiography. J Am Soc Echocardiogr. 2016 Jan; 29(1):74-82.
    View in: PubMed
    Score: 0.009
  95. Leaflet-chordal relations in patients with primary and secondary mitral regurgitation. J Am Soc Echocardiogr. 2015 Nov; 28(11):1302-8.
    View in: PubMed
    Score: 0.009
  96. Improved quantification of left ventricular function by applying signal averaging to echocardiographic acoustic quantification. J Am Soc Echocardiogr. 1995 Sep-Oct; 8(5 Pt 1):679-89.
    View in: PubMed
    Score: 0.009
  97. Three-dimensional echocardiography-based analysis of right ventricular shape in pulmonary arterial hypertension. Eur Heart J Cardiovasc Imaging. 2016 May; 17(5):564-75.
    View in: PubMed
    Score: 0.009
  98. Visualization and measurement of mitral valve chordae tendineae using three-dimensional transesophageal echocardiography from the transgastric approach. J Am Soc Echocardiogr. 2015 Apr; 28(4):449-54.
    View in: PubMed
    Score: 0.009
  99. Impact of implantable transvenous device lead location on severity of tricuspid regurgitation. J Am Soc Echocardiogr. 2014 Nov; 27(11):1164-75.
    View in: PubMed
    Score: 0.008
  100. Right ventricular strain in pulmonary arterial hypertension: a 2D echocardiography and cardiac magnetic resonance study. Echocardiography. 2015 Feb; 32(2):257-63.
    View in: PubMed
    Score: 0.008
  101. Analysis of myocardial perfusion from vasodilator stress computed tomography: does improvement in image quality by iterative reconstruction lead to improved diagnostic accuracy? J Cardiovasc Comput Tomogr. 2014 May-Jun; 8(3):238-45.
    View in: PubMed
    Score: 0.008
  102. 3D echocardiographic location of implantable device leads and mechanism of associated tricuspid regurgitation. JACC Cardiovasc Imaging. 2014 Apr; 7(4):337-47.
    View in: PubMed
    Score: 0.008
  103. Prognostic value of normal regadenoson stress perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2013 Dec 21; 15:108.
    View in: PubMed
    Score: 0.008
  104. Age-related normal range of left ventricular strain and torsion using three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2014 Jan; 27(1):55-64.
    View in: PubMed
    Score: 0.008
  105. Sample size and cost analysis for pulmonary arterial hypertension drug trials using various imaging modalities to assess right ventricular size and function end points. Circ Cardiovasc Imaging. 2014 Jan; 7(1):115-24.
    View in: PubMed
    Score: 0.008
  106. A new definition for an old entity: improved definition of mitral valve prolapse using three-dimensional echocardiography and color-coded parametric models. J Am Soc Echocardiogr. 2014 Jan; 27(1):8-16.
    View in: PubMed
    Score: 0.008
  107. Three-dimensional modeling of the right ventricle from two-dimensional transthoracic echocardiographic images: utility of knowledge-based reconstruction in pulmonary arterial hypertension. J Am Soc Echocardiogr. 2013 Aug; 26(8):860-7.
    View in: PubMed
    Score: 0.008
  108. Comparison of twelve-lead electrocardiogram using a glove-based recording system with standard methodology. Am J Cardiol. 2013 Sep 15; 112(6):895-903.
    View in: PubMed
    Score: 0.008
  109. Considerations when measuring myocardial perfusion reserve by cardiovascular magnetic resonance using regadenoson. J Cardiovasc Magn Reson. 2012 Dec 28; 14:89.
    View in: PubMed
    Score: 0.007
  110. Bicuspid aortic valve: inter-racial difference in frequency and aortic dimensions. JACC Cardiovasc Imaging. 2012 Oct; 5(10):981-9.
    View in: PubMed
    Score: 0.007
  111. Myocardial deformation by speckle tracking in severe dilated cardiomyopathy. Arq Bras Cardiol. 2012 Sep; 99(3):834-43.
    View in: PubMed
    Score: 0.007
  112. Myocardial perfusion: near-automated evaluation from contrast-enhanced MR images obtained at rest and during vasodilator stress. Radiology. 2012 Nov; 265(2):576-83.
    View in: PubMed
    Score: 0.007
  113. Accuracy of aortic annular measurements obtained from three-dimensional echocardiography, CT and MRI: human in vitro and in vivo studies. Heart. 2012 Aug; 98(15):1146-52.
    View in: PubMed
    Score: 0.007
  114. Noninvasive estimation of left ventricular compliance using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012 Jun; 25(6):661-6.
    View in: PubMed
    Score: 0.007
  115. Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension. J Cardiovasc Magn Reson. 2012 Feb 01; 14:11.
    View in: PubMed
    Score: 0.007
  116. Noninvasive quantification of left ventricular elastance and ventricular-arterial coupling using three-dimensional echocardiography and arterial tonometry. Am J Physiol Heart Circ Physiol. 2011 Nov; 301(5):H1916-23.
    View in: PubMed
    Score: 0.007
  117. The value of three-dimensional echocardiography derived mitral valve parametric maps and the role of experience in the diagnosis of pathology. J Am Soc Echocardiogr. 2011 Aug; 24(8):860-7.
    View in: PubMed
    Score: 0.007
  118. A three-dimensional insight into the complexity of flow convergence in mitral regurgitation: adjunctive benefit of anatomic regurgitant orifice area. Am J Physiol Heart Circ Physiol. 2011 Sep; 301(3):H1015-24.
    View in: PubMed
    Score: 0.007
  119. Age- and gender-dependency of left ventricular geometry assessed with real-time three-dimensional transthoracic echocardiography. J Am Soc Echocardiogr. 2011 May; 24(5):541-7.
    View in: PubMed
    Score: 0.006
  120. Assessment of the aortic root using real-time 3D transesophageal echocardiography. Circ J. 2010 Nov; 74(12):2649-57.
    View in: PubMed
    Score: 0.006
  121. Characterization of degenerative mitral valve disease using morphologic analysis of real-time three-dimensional echocardiographic images: objective insight into complexity and planning of mitral valve repair. Circ Cardiovasc Imaging. 2011 Jan; 4(1):24-32.
    View in: PubMed
    Score: 0.006
  122. Serial changes in left ventricular shape following early mitral valve repair. Am J Cardiol. 2010 Sep 15; 106(6):836-42.
    View in: PubMed
    Score: 0.006
  123. Rapid estimation of left ventricular function using echocardiographic speckle-tracking of mitral annular displacement. J Am Soc Echocardiogr. 2010 May; 23(5):511-5.
    View in: PubMed
    Score: 0.006
  124. Reasons for nonadherence to guidelines for aortic valve replacement in patients with severe aortic stenosis and potential solutions. Am J Cardiol. 2010 May 01; 105(9):1339-42.
    View in: PubMed
    Score: 0.006
  125. Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc Imaging. 2010 Jan; 3(1):10-8.
    View in: PubMed
    Score: 0.006
  126. Real-time 3-dimensional echocardiographic assessment of left ventricular dyssynchrony: pitfalls in patients with dilated cardiomyopathy. JACC Cardiovasc Imaging. 2009 Jul; 2(7):802-12.
    View in: PubMed
    Score: 0.006
  127. Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur Heart J. 2009 Jul; 30(13):1565-73.
    View in: PubMed
    Score: 0.006
  128. Comparative diagnostic accuracy of multiplane and multislice three-dimensional dobutamine stress echocardiography in the diagnosis of coronary artery disease. J Am Soc Echocardiogr. 2009 May; 22(5):437-42.
    View in: PubMed
    Score: 0.006
  129. Diagnostic value of parametric imaging of left ventricular wall motion from contrast-enhanced echocardiograms in patients with poor acoustic windows. J Am Soc Echocardiogr. 2009 Mar; 22(3):276-83.
    View in: PubMed
    Score: 0.006
  130. Feasibility of regional and global left ventricular shape analysis from real-time 3d echocardiography. Annu Int Conf IEEE Eng Med Biol Soc. 2009; 2009:3641-4.
    View in: PubMed
    Score: 0.006
  131. A study of functional anatomy of aortic-mitral valve coupling using 3D matrix transesophageal echocardiography. Circ Cardiovasc Imaging. 2009 Jan; 2(1):24-31.
    View in: PubMed
    Score: 0.006
  132. Real-time three-dimensional transesophageal echocardiography in valve disease: comparison with surgical findings and evaluation of prosthetic valves. J Am Soc Echocardiogr. 2008 Dec; 21(12):1347-54.
    View in: PubMed
    Score: 0.005
  133. Age and body surface area dependency of mitral valve and papillary apparatus parameters: assessment by real-time three-dimensional echocardiography. Eur J Echocardiogr. 2009 Mar; 10(2):287-94.
    View in: PubMed
    Score: 0.005
  134. Measurement of left ventricular mass by real-time three-dimensional echocardiography: validation against magnetic resonance and comparison with two-dimensional and m-mode measurements. J Am Soc Echocardiogr. 2008 Sep; 21(9):1001-5.
    View in: PubMed
    Score: 0.005
  135. Live 3-dimensional transesophageal echocardiography initial experience using the fully-sampled matrix array probe. J Am Coll Cardiol. 2008 Aug 05; 52(6):446-9.
    View in: PubMed
    Score: 0.005
  136. Quantitative assessment of left ventricular volume and ejection fraction using two-dimensional speckle tracking echocardiography. Eur J Echocardiogr. 2009 Jan; 10(1):82-8.
    View in: PubMed
    Score: 0.005
  137. Quantification of mitral apparatus dynamics in functional and ischemic mitral regurgitation using real-time 3-dimensional echocardiography. J Am Soc Echocardiogr. 2008 Apr; 21(4):347-54.
    View in: PubMed
    Score: 0.005
  138. Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation. 2006 Aug 15; 114(7):654-61.
    View in: PubMed
    Score: 0.005
  139. Dual triggering improves the accuracy of left ventricular volume measurements by contrast-enhanced real-time 3-dimensional echocardiography. J Am Soc Echocardiogr. 2005 Dec; 18(12):1292-8.
    View in: PubMed
    Score: 0.005
  140. Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. Eur Heart J. 2006 Feb; 27(4):460-8.
    View in: PubMed
    Score: 0.005
  141. Improved semiautomated quantification of left ventricular volumes and ejection fraction using 3-dimensional echocardiography with a full matrix-array transducer: comparison with magnetic resonance imaging. J Am Soc Echocardiogr. 2005 Aug; 18(8):779-88.
    View in: PubMed
    Score: 0.004
  142. Improved quantification of left ventricular mass based on endocardial and epicardial surface detection with real time three dimensional echocardiography. Heart. 2006 Feb; 92(2):213-9.
    View in: PubMed
    Score: 0.004
  143. Age dependency of the Tei index of myocardial performance. J Am Soc Echocardiogr. 2004 Apr; 17(4):350-2.
    View in: PubMed
    Score: 0.004
  144. Normal values of left ventricular systolic and diastolic function derived from signal-averaged acoustic quantification waveforms: a multicenter study. J Am Soc Echocardiogr. 2003 Dec; 16(12):1244-51.
    View in: PubMed
    Score: 0.004
  145. Accuracy of mitral valve area measurements using transthoracic rapid freehand 3-dimensional scanning: comparison with noninvasive and invasive methods. J Am Soc Echocardiogr. 2003 Dec; 16(12):1292-300.
    View in: PubMed
    Score: 0.004
  146. Current state of intraoperative echocardiography. Echocardiography. 2003 Nov; 20(8):771-80.
    View in: PubMed
    Score: 0.004
  147. Dynamic three-dimensional color flow Doppler: an improved technique for the assessment of mitral regurgitation. Echocardiography. 2003 Apr; 20(3):265-73.
    View in: PubMed
    Score: 0.004
  148. Effects of aging on left atrial reservoir, conduit, and booster pump function: a multi-institution acoustic quantification study. Heart. 2001 Mar; 85(3):272-7.
    View in: PubMed
    Score: 0.003
  149. Myocardial contrast echocardiography with power Doppler imaging. Am J Cardiol. 2000 Aug 15; 86(4):479-81.
    View in: PubMed
    Score: 0.003
  150. Effects of inotropic stimulation on segmental left ventricular relaxation quantified by color kinesis. Am J Cardiol. 2000 Jun 15; 85(12):1476-80.
    View in: PubMed
    Score: 0.003
  151. Spectral analysis of left ventricular area variability as a tool to improve the understanding of cardiac autonomic control. Physiol Meas. 2000 May; 21(2):319-31.
    View in: PubMed
    Score: 0.003
  152. Three-dimensional echocardiography in adult patients: comparison between transthoracic and transesophageal reconstructions. J Am Soc Echocardiogr. 1999 Dec; 12(12):1045-52.
    View in: PubMed
    Score: 0.003
  153. Identification of cardiac masses and abnormal blood flow patterns with harmonic power Doppler contrast echocardiography. J Am Soc Echocardiogr. 1999 Oct; 12(10):871-5.
    View in: PubMed
    Score: 0.003
  154. Quantitative assessment of regional right ventricular function with color kinesis. Am J Respir Crit Care Med. 1999 Jun; 159(6):1949-59.
    View in: PubMed
    Score: 0.003
  155. Age dependency of left atrial and left ventricular acoustic quantification waveforms for the evaluation of diastolic performance in left ventricular hypertrophy. J Am Soc Echocardiogr. 1998 Nov; 11(11):1027-35.
    View in: PubMed
    Score: 0.003
  156. Use of color kinesis for evaluation of left ventricular filling in patients with dilated cardiomyopathy and mitral regurgitation. J Am Coll Cardiol. 1998 Jun; 31(7):1598-606.
    View in: PubMed
    Score: 0.003
  157. Quantitative evaluation of global and regional left ventricular diastolic function with color kinesis. Circulation. 1998 Mar 24; 97(11):1053-61.
    View in: PubMed
    Score: 0.003
  158. Transnasal transesophageal echocardiography. J Am Soc Echocardiogr. 1997 Sep; 10(7):728-37.
    View in: PubMed
    Score: 0.003
  159. Spectral analysis of the systolic blood pressure signal in secondary hypertension: a method for the identification of phaeochromocytoma. J Hypertens. 1994 Mar; 12(3):269-75.
    View in: PubMed
    Score: 0.002
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.