The University of Chicago Header Logo

Connection

Victor Mor-Avi to Reproducibility of Results

This is a "connection" page, showing publications Victor Mor-Avi has written about Reproducibility of Results.
Connection Strength

3.354
  1. Deep learning assisted measurement of echocardiographic left heart parameters: improvement in interobserver variability and workflow efficiency. Int J Cardiovasc Imaging. 2023 Dec; 39(12):2507-2516.
    View in: PubMed
    Score: 0.148
  2. Contrast-enhanced echocardiographic measurement of longitudinal strain: accuracy and its relationship with image quality. Int J Cardiovasc Imaging. 2020 Mar; 36(3):431-439.
    View in: PubMed
    Score: 0.113
  3. 3-Dimensional Echocardiography: Latest Developments and Future Directions. JACC Cardiovasc Imaging. 2018 12; 11(12):1854-1878.
    View in: PubMed
    Score: 0.106
  4. Reproducibility and experience dependence of echocardiographic indices of left ventricular function: Side-by-side comparison of global longitudinal strain and ejection fraction. Echocardiography. 2017 Mar; 34(3):365-370.
    View in: PubMed
    Score: 0.093
  5. Atrial-focused views improve the accuracy of two-dimensional echocardiographic measurements of the left and right atrial volumes: a contribution to the increase in normal values in the guidelines update. Int J Cardiovasc Imaging. 2017 Feb; 33(2):209-218.
    View in: PubMed
    Score: 0.091
  6. Three-dimensional quantification of myocardial perfusion during regadenoson stress computed tomography. Eur J Radiol. 2016 May; 85(5):885-92.
    View in: PubMed
    Score: 0.087
  7. Semi-automated echocardiographic quantification of right ventricular size and function. Int J Cardiovasc Imaging. 2015 Aug; 31(6):1149-57.
    View in: PubMed
    Score: 0.083
  8. Quantification of left ventricular size and function using contrast-enhanced real-time 3D imaging with power modulation: comparison with cardiac MRI. Ultrasound Med Biol. 2012 Nov; 38(11):1853-8.
    View in: PubMed
    Score: 0.068
  9. Real-time 3D echocardiographic quantification of left atrial volume: multicenter study for validation with CMR. JACC Cardiovasc Imaging. 2012 Aug; 5(8):769-77.
    View in: PubMed
    Score: 0.068
  10. Evaluation of myocardial deformation in patients with sickle cell disease and preserved ejection fraction using three-dimensional speckle tracking echocardiography. Echocardiography. 2012 Sep; 29(8):962-9.
    View in: PubMed
    Score: 0.067
  11. Three-dimensional analysis of interventricular septal curvature from cardiac magnetic resonance images for the evaluation of patients with pulmonary hypertension. Int J Cardiovasc Imaging. 2012 Jun; 28(5):1073-85.
    View in: PubMed
    Score: 0.063
  12. Reproducibility and inter-vendor variability of left ventricular deformation measurements by three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2011 Aug; 24(8):878-85.
    View in: PubMed
    Score: 0.063
  13. Imaging the forgotten chamber: is the devil in the boundary? J Am Soc Echocardiogr. 2010 Feb; 23(2):141-3.
    View in: PubMed
    Score: 0.057
  14. Volumetric quantification of myocardial perfusion using analysis of multi-detector computed tomography 3D datasets: comparison with nuclear perfusion imaging. Eur Radiol. 2010 Feb; 20(2):337-47.
    View in: PubMed
    Score: 0.056
  15. Value of multidetector computed tomography evaluation of myocardial perfusion in the assessment of ischemic heart disease: comparison with nuclear perfusion imaging. Eur Radiol. 2009 Aug; 19(8):1897-905.
    View in: PubMed
    Score: 0.054
  16. Automated frame-by-frame endocardial border detection from cardiac magnetic resonance images for quantitative assessment of left ventricular function: validation and clinical feasibility. J Magn Reson Imaging. 2009 Mar; 29(3):560-8.
    View in: PubMed
    Score: 0.054
  17. Echocardiographic quantification of left ventricular volume: what can we do better? J Am Soc Echocardiogr. 2008 Sep; 21(9):998-1000.
    View in: PubMed
    Score: 0.052
  18. Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: multicenter study for validation with magnetic resonance imaging and investigation of sources of error. JACC Cardiovasc Imaging. 2008 Jul; 1(4):413-23.
    View in: PubMed
    Score: 0.051
  19. Multidetector computed tomography evaluation of left ventricular volumes: sources of error and guidelines for their minimization. J Cardiovasc Comput Tomogr. 2008 Jul-Aug; 2(4):222-30.
    View in: PubMed
    Score: 0.051
  20. Value of vasodilator stress myocardial contrast echocardiography and magnetic resonance imaging for the differential diagnosis of ischemic versus nonischemic cardiomyopathy. J Am Soc Echocardiogr. 2008 May; 21(5):425-32.
    View in: PubMed
    Score: 0.050
  21. Quantification of regional left ventricular wall motion from real-time 3-dimensional echocardiography in patients with poor acoustic windows: effects of contrast enhancement tested against cardiac magnetic resonance. J Am Soc Echocardiogr. 2006 Jul; 19(7):886-93.
    View in: PubMed
    Score: 0.045
  22. Color encoding of endocardial motion improves the interpretation of contrast-enhanced echocardiographic stress tests by less-experienced readers. J Am Soc Echocardiogr. 2006 Jan; 19(1):48-54.
    View in: PubMed
    Score: 0.043
  23. Quantitative echocardiographic evaluation of myocardial perfusion using interrupted contrast infusion technique: in vivo validation studies and feasibility in human beings. J Am Soc Echocardiogr. 2005 Dec; 18(12):1304-11.
    View in: PubMed
    Score: 0.043
  24. Interrupted infusion of echocardiographic contrast as a basis for accurate measurement of myocardial perfusion: ex vivo validation and analysis procedures. J Am Soc Echocardiogr. 2005 Dec; 18(12):1312-20.
    View in: PubMed
    Score: 0.043
  25. Improved quantification of left ventricular volumes and mass based on endocardial and epicardial surface detection from cardiac MR images using level set models. J Cardiovasc Magn Reson. 2005; 7(3):595-602.
    View in: PubMed
    Score: 0.040
  26. Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging. Circulation. 2004 Sep 28; 110(13):1814-8.
    View in: PubMed
    Score: 0.040
  27. Normal Values of Three-Dimensional Right Ventricular Size and Function Measurements: Results of the World Alliance Societies of Echocardiography Study. J Am Soc Echocardiogr. 2023 08; 36(8):858-866.e1.
    View in: PubMed
    Score: 0.036
  28. Three-Dimensional Echocardiographic Deconstruction: Feasibility of Clinical Evaluation from Two-Dimensional Views Derived from a Three-Dimensional Data Set. J Am Soc Echocardiogr. 2022 10; 35(10):1009-1017.e2.
    View in: PubMed
    Score: 0.034
  29. Assessment of right ventricular size and function from cardiovascular magnetic resonance images using artificial intelligence. J Cardiovasc Magn Reson. 2022 04 11; 24(1):27.
    View in: PubMed
    Score: 0.033
  30. Combined assessment of myocardial perfusion and regional left ventricular function by analysis of contrast-enhanced power modulation images. Circulation. 2001 Jul 17; 104(3):352-7.
    View in: PubMed
    Score: 0.032
  31. Deep Learning-Based Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction: A Point-of-Care Solution. Circ Cardiovasc Imaging. 2021 06; 14(6):e012293.
    View in: PubMed
    Score: 0.032
  32. Normal values of regional left ventricular endocardial motion: multicenter color kinesis study. Am J Physiol Heart Circ Physiol. 2000 Nov; 279(5):H2464-76.
    View in: PubMed
    Score: 0.030
  33. Power Doppler imaging as a basis for automated endocardial border detection during left ventricular contrast enhancement. Echocardiography. 2000 Aug; 17(6 Pt 1):529-37.
    View in: PubMed
    Score: 0.030
  34. Myocardial strain analysis of the right ventricle: comparison of different cardiovascular magnetic resonance and echocardiographic techniques. J Cardiovasc Magn Reson. 2020 07 23; 22(1):51.
    View in: PubMed
    Score: 0.030
  35. Prevalence of mitral annular disjunction in patients with mitral valve prolapse and severe regurgitation. Int J Cardiovasc Imaging. 2020 Jul; 36(7):1363-1370.
    View in: PubMed
    Score: 0.029
  36. A multi-vendor, multi-center study on reproducibility and comparability of fast strain-encoded cardiovascular magnetic resonance imaging. Int J Cardiovasc Imaging. 2020 May; 36(5):899-911.
    View in: PubMed
    Score: 0.029
  37. Measurement errors in serial echocardiographic assessments of aortic valve stenosis severity. Int J Cardiovasc Imaging. 2020 Mar; 36(3):471-479.
    View in: PubMed
    Score: 0.028
  38. Machine learning based quantification of ejection and filling parameters by fully automated dynamic measurement of left ventricular volumes from cardiac magnetic resonance images. Magn Reson Imaging. 2020 04; 67:28-32.
    View in: PubMed
    Score: 0.028
  39. Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction Without Volume Measurements Using a Machine Learning Algorithm Mimicking a Human Expert. Circ Cardiovasc Imaging. 2019 09; 12(9):e009303.
    View in: PubMed
    Score: 0.028
  40. Echocardiography and cardiovascular magnetic resonance based evaluation of myocardial strain and relationship with late gadolinium enhancement. J Cardiovasc Magn Reson. 2019 08 08; 21(1):46.
    View in: PubMed
    Score: 0.028
  41. The role of computed tomography myocardial perfusion imaging in clinical practice. J Cardiovasc Comput Tomogr. 2020 Mar - Apr; 14(2):185-194.
    View in: PubMed
    Score: 0.027
  42. Machine Learning-Based Three-Dimensional Echocardiographic Quantification of Right Ventricular Size and Function: Validation Against Cardiac Magnetic Resonance. J Am Soc Echocardiogr. 2019 08; 32(8):969-977.
    View in: PubMed
    Score: 0.027
  43. Hemodynamic impact of coronary stenosis using computed tomography: comparison between noninvasive fractional flow reserve and 3D fusion of coronary angiography with stress myocardial perfusion. Int J Cardiovasc Imaging. 2019 Sep; 35(9):1733-1743.
    View in: PubMed
    Score: 0.027
  44. Machine learning based automated dynamic quantification of left heart chamber volumes. Eur Heart J Cardiovasc Imaging. 2019 May 01; 20(5):541-549.
    View in: PubMed
    Score: 0.027
  45. First Clinical Experience With 3-Dimensional Echocardiographic Transillumination Rendering. JACC Cardiovasc Imaging. 2019 09; 12(9):1868-1871.
    View in: PubMed
    Score: 0.027
  46. Feasibility of Cardiac Magnetic Resonance Wideband Protocol in Patients With Implantable Cardioverter Defibrillators and Its Utility for Defining Scar. Am J Cardiol. 2019 04 15; 123(8):1329-1335.
    View in: PubMed
    Score: 0.027
  47. Comparison Between Four-Chamber and Right Ventricular-Focused Views for the Quantitative Evaluation of Right Ventricular Size and Function. J Am Soc Echocardiogr. 2019 04; 32(4):484-494.
    View in: PubMed
    Score: 0.027
  48. Automated, machine learning-based, 3D echocardiographic quantification of left ventricular mass. Echocardiography. 2019 02; 36(2):312-319.
    View in: PubMed
    Score: 0.027
  49. Echocardiographic Assessment of the Tricuspid Annulus: The Effects of the Third Dimension and Measurement Methodology. J Am Soc Echocardiogr. 2019 02; 32(2):238-247.
    View in: PubMed
    Score: 0.026
  50. Load Dependency of Left Atrial Strain in Normal Subjects. J Am Soc Echocardiogr. 2018 11; 31(11):1221-1228.
    View in: PubMed
    Score: 0.026
  51. Diagnosis of Isolated Cleft Mitral Valve Using Three-Dimensional Echocardiography. J Am Soc Echocardiogr. 2018 11; 31(11):1161-1167.
    View in: PubMed
    Score: 0.026
  52. Peak left atrial strain as a single measure for the non-invasive assessment of left ventricular filling pressures. Int J Cardiovasc Imaging. 2019 Jan; 35(1):23-32.
    View in: PubMed
    Score: 0.026
  53. Feasibility of Left Ventricular Global Longitudinal Strain Measurements from Contrast-Enhanced Echocardiographic Images. J Am Soc Echocardiogr. 2018 03; 31(3):297-303.
    View in: PubMed
    Score: 0.025
  54. 3-Dimensional Echocardiographic Analysis of the Tricuspid Annulus Provides New Insights Into Tricuspid Valve Geometry and Dynamics. JACC Cardiovasc Imaging. 2019 03; 12(3):401-412.
    View in: PubMed
    Score: 0.025
  55. 2D and 3D Echocardiography-Derived Indices of Left Ventricular Function and Shape: Relationship With Mortality. JACC Cardiovasc Imaging. 2018 11; 11(11):1569-1579.
    View in: PubMed
    Score: 0.025
  56. Quantification of Right Ventricular Size and Function from Contrast-Enhanced Three-Dimensional Echocardiographic Images. J Am Soc Echocardiogr. 2017 Dec; 30(12):1193-1202.
    View in: PubMed
    Score: 0.024
  57. Three-Dimensional Echocardiographic Automated Quantification of Left Heart Chamber Volumes Using an Adaptive Analytics Algorithm: Feasibility and Impact of Image Quality in Nonselected Patients. J Am Soc Echocardiogr. 2017 Sep; 30(9):879-885.
    View in: PubMed
    Score: 0.024
  58. 3D echocardiographic analysis of aortic annulus for transcatheter aortic valve replacement using novel aortic valve quantification software: Comparison with computed tomography. Echocardiography. 2017 May; 34(5):690-699.
    View in: PubMed
    Score: 0.024
  59. LA Strain for Categorization of LV Diastolic Dysfunction. JACC Cardiovasc Imaging. 2017 07; 10(7):735-743.
    View in: PubMed
    Score: 0.023
  60. Improved detection of myocardial damage in sarcoidosis using longitudinal strain in patients with preserved left ventricular ejection fraction. Echocardiography. 2016 Sep; 33(9):1344-52.
    View in: PubMed
    Score: 0.023
  61. Transthoracic 3D Echocardiographic Left Heart Chamber Quantification Using an Automated Adaptive Analytics Algorithm. JACC Cardiovasc Imaging. 2016 07; 9(7):769-782.
    View in: PubMed
    Score: 0.022
  62. Continuing Medical Education Activity in Echocardiography: May 2016. Echocardiography. 2016 May; 33(5):695.
    View in: PubMed
    Score: 0.022
  63. Contrast echocardiographic quantification of regional myocardial perfusion: validation with an isolated rabbit heart model. J Am Soc Echocardiogr. 1996 Mar-Apr; 9(2):156-65.
    View in: PubMed
    Score: 0.022
  64. Simultaneous Longitudinal Strain in All 4 Cardiac Chambers: A Novel Method for Comprehensive Functional Assessment of the Heart. Circ Cardiovasc Imaging. 2016 Mar; 9(3):e003895.
    View in: PubMed
    Score: 0.022
  65. Right Heart Involvement in Patients with Sarcoidosis. Echocardiography. 2016 May; 33(5):734-41.
    View in: PubMed
    Score: 0.022
  66. Echocardiographic Diagnosis of Acute Pulmonary Embolism in Patients with McConnell's Sign. Echocardiography. 2016 May; 33(5):696-702.
    View in: PubMed
    Score: 0.022
  67. Comprehensive Two-Dimensional Interrogation of the Tricuspid Valve Using Knowledge Derived from Three-Dimensional Echocardiography. J Am Soc Echocardiogr. 2016 Jan; 29(1):74-82.
    View in: PubMed
    Score: 0.021
  68. Leaflet-chordal relations in patients with primary and secondary mitral regurgitation. J Am Soc Echocardiogr. 2015 Nov; 28(11):1302-8.
    View in: PubMed
    Score: 0.021
  69. Novel Approach to Three-Dimensional Echocardiographic Quantification of Right Ventricular Volumes and Function from Focused Views. J Am Soc Echocardiogr. 2015 Oct; 28(10):1222-31.
    View in: PubMed
    Score: 0.021
  70. Visualization and measurement of mitral valve chordae tendineae using three-dimensional transesophageal echocardiography from the transgastric approach. J Am Soc Echocardiogr. 2015 Apr; 28(4):449-54.
    View in: PubMed
    Score: 0.020
  71. Impact of implantable transvenous device lead location on severity of tricuspid regurgitation. J Am Soc Echocardiogr. 2014 Nov; 27(11):1164-75.
    View in: PubMed
    Score: 0.020
  72. Right ventricular strain in pulmonary arterial hypertension: a 2D echocardiography and cardiac magnetic resonance study. Echocardiography. 2015 Feb; 32(2):257-63.
    View in: PubMed
    Score: 0.019
  73. Age-related normal range of left ventricular strain and torsion using three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2014 Jan; 27(1):55-64.
    View in: PubMed
    Score: 0.019
  74. A new definition for an old entity: improved definition of mitral valve prolapse using three-dimensional echocardiography and color-coded parametric models. J Am Soc Echocardiogr. 2014 Jan; 27(1):8-16.
    View in: PubMed
    Score: 0.018
  75. Three-dimensional modeling of the right ventricle from two-dimensional transthoracic echocardiographic images: utility of knowledge-based reconstruction in pulmonary arterial hypertension. J Am Soc Echocardiogr. 2013 Aug; 26(8):860-7.
    View in: PubMed
    Score: 0.018
  76. Comparison of twelve-lead electrocardiogram using a glove-based recording system with standard methodology. Am J Cardiol. 2013 Sep 15; 112(6):895-903.
    View in: PubMed
    Score: 0.018
  77. Considerations when measuring myocardial perfusion reserve by cardiovascular magnetic resonance using regadenoson. J Cardiovasc Magn Reson. 2012 Dec 28; 14:89.
    View in: PubMed
    Score: 0.018
  78. Myocardial deformation by speckle tracking in severe dilated cardiomyopathy. Arq Bras Cardiol. 2012 Sep; 99(3):834-43.
    View in: PubMed
    Score: 0.017
  79. Myocardial perfusion: near-automated evaluation from contrast-enhanced MR images obtained at rest and during vasodilator stress. Radiology. 2012 Nov; 265(2):576-83.
    View in: PubMed
    Score: 0.017
  80. Accuracy of aortic annular measurements obtained from three-dimensional echocardiography, CT and MRI: human in vitro and in vivo studies. Heart. 2012 Aug; 98(15):1146-52.
    View in: PubMed
    Score: 0.017
  81. Noninvasive estimation of left ventricular compliance using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012 Jun; 25(6):661-6.
    View in: PubMed
    Score: 0.017
  82. Assessment of right ventricular function using echocardiographic speckle tracking of the tricuspid annular motion: comparison with cardiac magnetic resonance. Echocardiography. 2012; 29(1):19-24.
    View in: PubMed
    Score: 0.016
  83. Noninvasive quantification of left ventricular elastance and ventricular-arterial coupling using three-dimensional echocardiography and arterial tonometry. Am J Physiol Heart Circ Physiol. 2011 Nov; 301(5):H1916-23.
    View in: PubMed
    Score: 0.016
  84. The value of three-dimensional echocardiography derived mitral valve parametric maps and the role of experience in the diagnosis of pathology. J Am Soc Echocardiogr. 2011 Aug; 24(8):860-7.
    View in: PubMed
    Score: 0.016
  85. A three-dimensional insight into the complexity of flow convergence in mitral regurgitation: adjunctive benefit of anatomic regurgitant orifice area. Am J Physiol Heart Circ Physiol. 2011 Sep; 301(3):H1015-24.
    View in: PubMed
    Score: 0.016
  86. Characterization of degenerative mitral valve disease using morphologic analysis of real-time three-dimensional echocardiographic images: objective insight into complexity and planning of mitral valve repair. Circ Cardiovasc Imaging. 2011 Jan; 4(1):24-32.
    View in: PubMed
    Score: 0.015
  87. Rapid estimation of left ventricular function using echocardiographic speckle-tracking of mitral annular displacement. J Am Soc Echocardiogr. 2010 May; 23(5):511-5.
    View in: PubMed
    Score: 0.014
  88. Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc Imaging. 2010 Jan; 3(1):10-8.
    View in: PubMed
    Score: 0.014
  89. Feasibility of left ventricular shape analysis from transthoracic real-time 3-D echocardiographic images. Ultrasound Med Biol. 2009 Dec; 35(12):1953-62.
    View in: PubMed
    Score: 0.014
  90. Real-time 3-dimensional echocardiographic assessment of left ventricular dyssynchrony: pitfalls in patients with dilated cardiomyopathy. JACC Cardiovasc Imaging. 2009 Jul; 2(7):802-12.
    View in: PubMed
    Score: 0.014
  91. Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur Heart J. 2009 Jul; 30(13):1565-73.
    View in: PubMed
    Score: 0.014
  92. Comparative diagnostic accuracy of multiplane and multislice three-dimensional dobutamine stress echocardiography in the diagnosis of coronary artery disease. J Am Soc Echocardiogr. 2009 May; 22(5):437-42.
    View in: PubMed
    Score: 0.014
  93. Diagnostic value of parametric imaging of left ventricular wall motion from contrast-enhanced echocardiograms in patients with poor acoustic windows. J Am Soc Echocardiogr. 2009 Mar; 22(3):276-83.
    View in: PubMed
    Score: 0.013
  94. Feasibility of regional and global left ventricular shape analysis from real-time 3d echocardiography. Annu Int Conf IEEE Eng Med Biol Soc. 2009; 2009:3641-4.
    View in: PubMed
    Score: 0.013
  95. Real-time three-dimensional transesophageal echocardiography in valve disease: comparison with surgical findings and evaluation of prosthetic valves. J Am Soc Echocardiogr. 2008 Dec; 21(12):1347-54.
    View in: PubMed
    Score: 0.013
  96. Measurement of left ventricular mass by real-time three-dimensional echocardiography: validation against magnetic resonance and comparison with two-dimensional and m-mode measurements. J Am Soc Echocardiogr. 2008 Sep; 21(9):1001-5.
    View in: PubMed
    Score: 0.013
  97. Quantification of mitral apparatus dynamics in functional and ischemic mitral regurgitation using real-time 3-dimensional echocardiography. J Am Soc Echocardiogr. 2008 Apr; 21(4):347-54.
    View in: PubMed
    Score: 0.012
  98. Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation. 2006 Aug 15; 114(7):654-61.
    View in: PubMed
    Score: 0.011
  99. Dual triggering improves the accuracy of left ventricular volume measurements by contrast-enhanced real-time 3-dimensional echocardiography. J Am Soc Echocardiogr. 2005 Dec; 18(12):1292-8.
    View in: PubMed
    Score: 0.011
  100. Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. Eur Heart J. 2006 Feb; 27(4):460-8.
    View in: PubMed
    Score: 0.011
  101. Spectral analysis of left ventricular area variability as a tool to improve the understanding of cardiac autonomic control. Physiol Meas. 2000 May; 21(2):319-31.
    View in: PubMed
    Score: 0.007
  102. Effects of MPEG compression on the quality and diagnostic accuracy of digital echocardiography studies. J Am Soc Echocardiogr. 2000 Jan; 13(1):51-7.
    View in: PubMed
    Score: 0.007
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.