The University of Chicago Header Logo

Connection

S. Murray Sherman to Animals

This is a "connection" page, showing publications S. Murray Sherman has written about Animals.
Connection Strength

2.259
  1. Cortical control of behavior and attention from an evolutionary perspective. Neuron. 2021 10 06; 109(19):3048-3054.
    View in: PubMed
    Score: 0.052
  2. Layer 5 Corticofugal Projections from Diverse Cortical Areas: Variations on a Pattern of Thalamic and Extrathalamic Targets. J Neurosci. 2020 07 22; 40(30):5785-5796.
    View in: PubMed
    Score: 0.048
  3. Convergent synaptic inputs to layer 1 cells of mouse cortex. Eur J Neurosci. 2019 06; 49(11):1388-1399.
    View in: PubMed
    Score: 0.043
  4. A Sensorimotor Pathway via Higher-Order Thalamus. J Neurosci. 2019 01 23; 39(4):692-704.
    View in: PubMed
    Score: 0.043
  5. My prolonged collaboration with Ray Guillery. Eur J Neurosci. 2019 04; 49(7):928-937.
    View in: PubMed
    Score: 0.041
  6. Corticofugal circuits: Communication lines from the cortex to the rest of the brain. J Comp Neurol. 2019 02 15; 527(3):640-650.
    View in: PubMed
    Score: 0.041
  7. Synaptic properties of the lemniscal and paralemniscal pathways to the mouse somatosensory thalamus. Proc Natl Acad Sci U S A. 2017 07 25; 114(30):E6212-E6221.
    View in: PubMed
    Score: 0.039
  8. Functioning of Circuits Connecting Thalamus and Cortex. Compr Physiol. 2017 03 16; 7(2):713-739.
    View in: PubMed
    Score: 0.038
  9. Thalamus plays a central role in ongoing cortical functioning. Nat Neurosci. 2016 Apr; 19(4):533-41.
    View in: PubMed
    Score: 0.036
  10. Functional topographic organization of the motor reticulothalamic pathway. J Neurophysiol. 2015 May 01; 113(9):3090-7.
    View in: PubMed
    Score: 0.033
  11. Modulatory effects of activation of metabotropic glutamate receptors on GABAergic circuits in the mouse thalamus. J Neurophysiol. 2015 Apr 01; 113(7):2646-52.
    View in: PubMed
    Score: 0.033
  12. Properties of the primary somatosensory cortex projection to the primary motor cortex in the mouse. J Neurophysiol. 2015 Apr 01; 113(7):2400-7.
    View in: PubMed
    Score: 0.033
  13. Modulatory effects of activation of metabotropic glutamate receptors on GABAergic circuits in the mouse cortex. J Neurophysiol. 2014 Jun 01; 111(11):2287-97.
    View in: PubMed
    Score: 0.031
  14. Laser-scanning photostimulation of optogenetically targeted forebrain circuits. J Vis Exp. 2013 Dec 27; (82):50915.
    View in: PubMed
    Score: 0.031
  15. Activation of both Group I and Group II metabotropic glutamatergic receptors suppress retinogeniculate transmission. Neuroscience. 2013 Jul 09; 242:78-84.
    View in: PubMed
    Score: 0.029
  16. The function of metabotropic glutamate receptors in thalamus and cortex. Neuroscientist. 2014 Apr; 20(2):136-49.
    View in: PubMed
    Score: 0.029
  17. A modulatory effect of the feedback from higher visual areas to V1 in the mouse. J Neurophysiol. 2013 May; 109(10):2618-31.
    View in: PubMed
    Score: 0.029
  18. Activation requirements for metabotropic glutamate receptors. Neurosci Lett. 2013 Apr 29; 541:67-72.
    View in: PubMed
    Score: 0.029
  19. Intracortical convergence of layer 6 neurons. Neuroreport. 2012 Aug 22; 23(12):736-40.
    View in: PubMed
    Score: 0.028
  20. Two populations of corticothalamic and interareal corticocortical cells in the subgranular layers of the mouse primary sensory cortices. J Comp Neurol. 2012 Jun 01; 520(8):1678-86.
    View in: PubMed
    Score: 0.027
  21. Modulatory effects of metabotropic glutamate receptors on local cortical circuits. J Neurosci. 2012 May 23; 32(21):7364-72.
    View in: PubMed
    Score: 0.027
  22. Thalamocortical interactions. Curr Opin Neurobiol. 2012 Aug; 22(4):575-9.
    View in: PubMed
    Score: 0.027
  23. Intrinsic modulators of auditory thalamocortical transmission. Hear Res. 2012 May; 287(1-2):43-50.
    View in: PubMed
    Score: 0.027
  24. Synaptic properties of corticocortical connections between the primary and secondary visual cortical areas in the mouse. J Neurosci. 2011 Nov 16; 31(46):16494-506.
    View in: PubMed
    Score: 0.026
  25. Properties of the thalamic projection from the posterior medial nucleus to primary and secondary somatosensory cortices in the mouse. Proc Natl Acad Sci U S A. 2011 Nov 01; 108(44):18156-61.
    View in: PubMed
    Score: 0.026
  26. Synaptic properties of thalamic input to the subgranular layers of primary somatosensory and auditory cortices in the mouse. J Neurosci. 2011 Sep 07; 31(36):12738-47.
    View in: PubMed
    Score: 0.026
  27. Distinct functions for direct and transthalamic corticocortical connections. J Neurophysiol. 2011 Sep; 106(3):1068-77.
    View in: PubMed
    Score: 0.026
  28. Functional organization of the thalamic input to the thalamic reticular nucleus. J Neurosci. 2011 May 04; 31(18):6791-9.
    View in: PubMed
    Score: 0.025
  29. In vitro imaging using laser photostimulation with flavoprotein autofluorescence. Nat Protoc. 2011 Apr; 6(4):502-8.
    View in: PubMed
    Score: 0.025
  30. Synaptic properties of connections between the primary and secondary auditory cortices in mice. Cereb Cortex. 2011 Nov; 21(11):2425-41.
    View in: PubMed
    Score: 0.025
  31. On the classification of pathways in the auditory midbrain, thalamus, and cortex. Hear Res. 2011 Jun; 276(1-2):79-87.
    View in: PubMed
    Score: 0.025
  32. Synaptic properties of thalamic input to layers 2/3 and 4 of primary somatosensory and auditory cortices. J Neurophysiol. 2011 Jan; 105(1):279-92.
    View in: PubMed
    Score: 0.025
  33. Specific and nonspecific thalamocortical connectivity in the auditory and somatosensory thalamocortical slices. Neuroreport. 2010 Sep 15; 21(13):861-4.
    View in: PubMed
    Score: 0.024
  34. Branched thalamic afferents: what are the messages that they relay to the cortex? Brain Res Rev. 2011 Jan 07; 66(1-2):205-19.
    View in: PubMed
    Score: 0.024
  35. Functional organization of the somatosensory cortical layer 6 feedback to the thalamus. Cereb Cortex. 2010 Jan; 20(1):13-24.
    View in: PubMed
    Score: 0.023
  36. Topography and physiology of ascending streams in the auditory tectothalamic pathway. Proc Natl Acad Sci U S A. 2010 Jan 05; 107(1):372-7.
    View in: PubMed
    Score: 0.023
  37. The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat Neurosci. 2010 Jan; 13(1):84-8.
    View in: PubMed
    Score: 0.023
  38. Different distributions of calbindin and calretinin immunostaining across the medial and dorsal divisions of the mouse medial geniculate body. Hear Res. 2009 Nov; 257(1-2):16-23.
    View in: PubMed
    Score: 0.022
  39. Synaptic properties of the mammillary and cortical afferents to the anterodorsal thalamic nucleus in the mouse. J Neurosci. 2009 Jun 17; 29(24):7815-9.
    View in: PubMed
    Score: 0.022
  40. Differences in intrinsic properties and local network connectivity of identified layer 5 and layer 6 adult mouse auditory corticothalamic neurons support a dual corticothalamic projection hypothesis. Cereb Cortex. 2009 Dec; 19(12):2810-26.
    View in: PubMed
    Score: 0.022
  41. Glutamatergic inhibition in sensory neocortex. Cereb Cortex. 2009 Oct; 19(10):2281-9.
    View in: PubMed
    Score: 0.022
  42. Differences in response to serotonergic activation between first and higher order thalamic nuclei. Cereb Cortex. 2009 Aug; 19(8):1776-86.
    View in: PubMed
    Score: 0.021
  43. Synaptic properties of thalamic and intracortical inputs to layer 4 of the first- and higher-order cortical areas in the auditory and somatosensory systems. J Neurophysiol. 2008 Jul; 100(1):317-26.
    View in: PubMed
    Score: 0.021
  44. Evidence for nonreciprocal organization of the mouse auditory thalamocortical-corticothalamic projection systems. J Comp Neurol. 2008 Mar 10; 507(2):1209-27.
    View in: PubMed
    Score: 0.020
  45. Differences in response to muscarinic activation between first and higher order thalamic relays. J Neurophysiol. 2007 Dec; 98(6):3538-47.
    View in: PubMed
    Score: 0.020
  46. Different topography of the reticulothalmic inputs to first- and higher-order somatosensory thalamic relays revealed using photostimulation. J Neurophysiol. 2007 Nov; 98(5):2903-9.
    View in: PubMed
    Score: 0.020
  47. The thalamus is more than just a relay. Curr Opin Neurobiol. 2007 Aug; 17(4):417-22.
    View in: PubMed
    Score: 0.020
  48. Fewer driver synapses in higher order than in first order thalamic relays. Neuroscience. 2007 Apr 25; 146(1):463-70.
    View in: PubMed
    Score: 0.019
  49. An argument for an olfactory thalamus. Trends Neurosci. 2007 Feb; 30(2):47-53.
    View in: PubMed
    Score: 0.019
  50. Mapping of the functional interconnections between thalamic reticular neurons using photostimulation. J Neurophysiol. 2006 Nov; 96(5):2593-600.
    View in: PubMed
    Score: 0.018
  51. The neural substrates of cognition. Trends Neurosci. 2006 Jun; 29(6):295-7.
    View in: PubMed
    Score: 0.018
  52. Mapping by laser photostimulation of connections between the thalamic reticular and ventral posterior lateral nuclei in the rat. J Neurophysiol. 2005 Oct; 94(4):2472-83.
    View in: PubMed
    Score: 0.017
  53. Higher-order thalamic relays burst more than first-order relays. Proc Natl Acad Sci U S A. 2005 Aug 23; 102(34):12236-41.
    View in: PubMed
    Score: 0.017
  54. Morphological correlates of triadic circuitry in the lateral geniculate nucleus of cats and rats. J Neurophysiol. 2005 Feb; 93(2):748-57.
    View in: PubMed
    Score: 0.016
  55. Thalamic relays and cortical functioning. Prog Brain Res. 2005; 149:107-26.
    View in: PubMed
    Score: 0.016
  56. Interneurons and triadic circuitry of the thalamus. Trends Neurosci. 2004 Nov; 27(11):670-5.
    View in: PubMed
    Score: 0.016
  57. Differences in projection patterns between large and small corticothalamic terminals. J Comp Neurol. 2004 Jul 26; 475(3):406-15.
    View in: PubMed
    Score: 0.016
  58. Somatosensory corticothalamic projections: distinguishing drivers from modulators. J Neurophysiol. 2004 Oct; 92(4):2185-97.
    View in: PubMed
    Score: 0.016
  59. Functional synaptic contacts by intranuclear axon collaterals of thalamic relay neurons. J Neurosci. 2003 Aug 20; 23(20):7642-6.
    View in: PubMed
    Score: 0.015
  60. Corticothalamic projections from the rat primary somatosensory cortex. J Neurosci. 2003 Aug 13; 23(19):7381-4.
    View in: PubMed
    Score: 0.015
  61. Single-unit recording in the lateral geniculate nucleus of the awake behaving monkey. Methods. 2003 Jun; 30(2):142-51.
    View in: PubMed
    Score: 0.015
  62. The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29; 357(1428):1695-708.
    View in: PubMed
    Score: 0.014
  63. The thalamus as a monitor of motor outputs. Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29; 357(1428):1809-21.
    View in: PubMed
    Score: 0.014
  64. Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron. 2002 Jan 17; 33(2):163-75.
    View in: PubMed
    Score: 0.013
  65. Synaptic targets of thalamic reticular nucleus terminals in the visual thalamus of the cat. J Comp Neurol. 2001 Nov 26; 440(4):321-41.
    View in: PubMed
    Score: 0.013
  66. The effects of saccadic eye movements on the activity of geniculate relay neurons in the monkey. Vis Neurosci. 2001 Mar-Apr; 18(2):253-8.
    View in: PubMed
    Score: 0.013
  67. Dynamics of low-threshold spike activation in relay neurons of the cat lateral geniculate nucleus. J Neurosci. 2001 Feb 01; 21(3):1022-32.
    View in: PubMed
    Score: 0.012
  68. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 2001 Feb; 24(2):122-6.
    View in: PubMed
    Score: 0.012
  69. Thalamic relay functions. Prog Brain Res. 2001; 134:51-69.
    View in: PubMed
    Score: 0.012
  70. Neurotransmitters contained in the subcortical extraretinal inputs to the monkey lateral geniculate nucleus. J Comp Neurol. 2000 Sep 04; 424(4):701-17.
    View in: PubMed
    Score: 0.012
  71. Control of dendritic outputs of inhibitory interneurons in the lateral geniculate nucleus. Neuron. 2000 Sep; 27(3):597-610.
    View in: PubMed
    Score: 0.012
  72. A new slant on the development of orientation selectivity. Nat Neurosci. 2000 Jun; 3(6):525-7.
    View in: PubMed
    Score: 0.012
  73. Dendritic depolarization efficiently attenuates low-threshold calcium spikes in thalamic relay cells. J Neurosci. 2000 May 15; 20(10):3909-14.
    View in: PubMed
    Score: 0.012
  74. Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. J Comp Neurol. 2000 Jan 24; 416(4):509-20.
    View in: PubMed
    Score: 0.012
  75. Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys. Vis Neurosci. 2000 Jan-Feb; 17(1):55-62.
    View in: PubMed
    Score: 0.012
  76. Glutamate inhibits thalamic reticular neurons. J Neurosci. 1999 Aug 01; 19(15):6694-9.
    View in: PubMed
    Score: 0.011
  77. Current clamp and modeling studies of low-threshold calcium spikes in cells of the cat's lateral geniculate nucleus. J Neurophysiol. 1999 May; 81(5):2360-73.
    View in: PubMed
    Score: 0.011
  78. Glutamate locally activates dendritic outputs of thalamic interneurons. Nature. 1998 Jul 30; 394(6692):478-82.
    View in: PubMed
    Score: 0.010
  79. On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". Proc Natl Acad Sci U S A. 1998 Jun 09; 95(12):7121-6.
    View in: PubMed
    Score: 0.010
  80. Response latencies of cells in the cat's lateral geniculate nucleus are less variable during burst than tonic firing. Vis Neurosci. 1998 Mar-Apr; 15(2):231-7.
    View in: PubMed
    Score: 0.010
  81. Distribution of synapses in the lateral geniculate nucleus of the cat: differences between laminae A and A1 and between relay cells and interneurons. J Comp Neurol. 1998 Jan 12; 390(2):247-55.
    View in: PubMed
    Score: 0.010
  82. [Acetylcholine decreases low threshold T-type calcium conductance of relay cells in the cat's lateral geniculate nucleus]. Sheng Li Xue Bao. 1997 Jun; 49(3):307-13.
    View in: PubMed
    Score: 0.010
  83. Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. Proc Natl Acad Sci U S A. 1997 Feb 18; 94(4):1517-20.
    View in: PubMed
    Score: 0.009
  84. Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: a comparison with corticogeniculate terminals. J Comp Neurol. 1997 Jan 27; 377(4):535-49.
    View in: PubMed
    Score: 0.009
  85. Ultrastructural localization suggests that retinal and cortical inputs access different metabotropic glutamate receptors in the lateral geniculate nucleus. J Neurosci. 1996 Dec 15; 16(24):8181-92.
    View in: PubMed
    Score: 0.009
  86. Kinetics of low threshold calcium channels of relay cells in cat lateral geniculate nucleus. Sci China C Life Sci. 1996 Dec; 39(6):645-51.
    View in: PubMed
    Score: 0.009
  87. Functional organization of thalamocortical relays. J Neurophysiol. 1996 Sep; 76(3):1367-95.
    View in: PubMed
    Score: 0.009
  88. Metabotropic glutamate receptors switch visual response mode of lateral geniculate nucleus cells from burst to tonic. J Neurophysiol. 1996 Sep; 76(3):1800-16.
    View in: PubMed
    Score: 0.009
  89. Dual response modes in lateral geniculate neurons: mechanisms and functions. Vis Neurosci. 1996 Mar-Apr; 13(2):205-13.
    View in: PubMed
    Score: 0.009
  90. Receiver operating characteristic (ROC) analysis of neurons in the cat's lateral geniculate nucleus during tonic and burst response mode. Vis Neurosci. 1995 Jul-Aug; 12(4):723-41.
    View in: PubMed
    Score: 0.008
  91. Effects of brain stem parabrachial activation on receptive field properties of cells in the cat's lateral geniculate nucleus. J Neurophysiol. 1995 Jun; 73(6):2428-47.
    View in: PubMed
    Score: 0.008
  92. Morphology of physiologically identified retinal X and Y axons in the cat's thalamus and midbrain as revealed by intraaxonal injection of biocytin. J Comp Neurol. 1995 Apr 17; 354(4):583-607.
    View in: PubMed
    Score: 0.008
  93. Latency variability of responses to visual stimuli in cells of the cat's lateral geniculate nucleus. Exp Brain Res. 1995; 105(1):7-17.
    View in: PubMed
    Score: 0.008
  94. Advances in understanding mechanisms of thalamic relays in cognition and behavior. J Neurosci. 2014 Nov 12; 34(46):15340-6.
    View in: PubMed
    Score: 0.008
  95. Brain-stem modulation of the response properties of cells in the cat's perigeniculate nucleus. Vis Neurosci. 1994 Jul-Aug; 11(4):781-91.
    View in: PubMed
    Score: 0.008
  96. Feedback inhibition in the cat's lateral geniculate nucleus. Exp Brain Res. 1994; 100(2):365-8.
    View in: PubMed
    Score: 0.008
  97. Ultrastructure of synapses from the pretectum in the A-laminae of the cat's lateral geniculate nucleus. J Comp Neurol. 1993 Aug 22; 334(4):618-30.
    View in: PubMed
    Score: 0.007
  98. The brain-stem parabrachial region controls mode of response to visual stimulation of neurons in the cat's lateral geniculate nucleus. Vis Neurosci. 1993 Jul-Aug; 10(4):631-42.
    View in: PubMed
    Score: 0.007
  99. Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2+ conductance. J Neurophysiol. 1992 Dec; 68(6):2185-98.
    View in: PubMed
    Score: 0.007
  100. Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat. J Neurophysiol. 1992 Dec; 68(6):2199-211.
    View in: PubMed
    Score: 0.007
  101. Electron-microscopic analysis of synaptic input from the perigeniculate nucleus to the A-laminae of the lateral geniculate nucleus in cats. J Comp Neurol. 1991 Aug 15; 310(3):316-36.
    View in: PubMed
    Score: 0.006
  102. Morphology and axonal projection patterns of individual neurons in the cat perigeniculate nucleus. J Neurophysiol. 1991 Jun; 65(6):1528-41.
    View in: PubMed
    Score: 0.006
  103. A GABAergic projection from the pretectum to the dorsal lateral geniculate nucleus in the cat. Neuroscience. 1991; 41(1):213-26.
    View in: PubMed
    Score: 0.006
  104. Intracellular and extracellular in vivo recording of different response modes for relay cells of the cat's lateral geniculate nucleus. Exp Brain Res. 1991; 83(2):317-28.
    View in: PubMed
    Score: 0.006
  105. N-methyl-D-aspartate receptors contribute to excitatory postsynaptic potentials of cat lateral geniculate neurons recorded in thalamic slices. Proc Natl Acad Sci U S A. 1990 Jun; 87(12):4548-52.
    View in: PubMed
    Score: 0.006
  106. Brainstem control of response modes in neurons of the cat's lateral geniculate nucleus. Proc Natl Acad Sci U S A. 1990 Apr; 87(7):2560-3.
    View in: PubMed
    Score: 0.006
  107. In vivo recording of postsynaptic potentials and low threshold spikes in W cells of the cat's lateral geniculate nucleus. Exp Brain Res. 1990; 81(2):438-42.
    View in: PubMed
    Score: 0.006
  108. Dendritic current flow in relay cells and interneurons of the cat's lateral geniculate nucleus. Proc Natl Acad Sci U S A. 1989 May; 86(10):3911-4.
    View in: PubMed
    Score: 0.006
  109. Rapid and sensitive mapping of long-range connections in vitro using flavoprotein autofluorescence imaging combined with laser photostimulation. J Neurophysiol. 2009 Jun; 101(6):3325-40.
    View in: PubMed
    Score: 0.005
  110. Morphology of retinogeniculate X and Y axon arbors in cats raised with binocular lid suture. J Neurophysiol. 1988 Dec; 60(6):2152-67.
    View in: PubMed
    Score: 0.005
  111. The projection of individual axons from the parabrachial region of the brain stem to the dorsal lateral geniculate nucleus in the cat. J Neurosci. 1988 Dec; 8(12):4565-75.
    View in: PubMed
    Score: 0.005
  112. Parabrachial innervation of the cat's dorsal lateral geniculate nucleus: an electron microscopic study using the tracer Phaseolus vulgaris leucoagglutinin (PHA-L). J Neurosci. 1988 Dec; 8(12):4576-88.
    View in: PubMed
    Score: 0.005
  113. Postsynaptic potentials recorded in neurons of the cat's lateral geniculate nucleus following electrical stimulation of the optic chiasm. J Neurophysiol. 1988 Dec; 60(6):1924-45.
    View in: PubMed
    Score: 0.005
  114. Identification of X versus Y properties for interneurons in the A-laminae of the cat's lateral geniculate nucleus. Exp Brain Res. 1988; 73(2):384-92.
    View in: PubMed
    Score: 0.005
  115. Synaptic circuitry of physiologically identified W-cells in the cat's dorsal lateral geniculate nucleus. J Neurosci. 1988 Jan; 8(1):31-48.
    View in: PubMed
    Score: 0.005
  116. Morphology of physiologically identified retinogeniculate X- and Y-axons in the cat. J Neurophysiol. 1987 Jul; 58(1):1-32.
    View in: PubMed
    Score: 0.005
  117. Synaptic circuits involving an individual retinogeniculate axon in the cat. J Comp Neurol. 1987 May 08; 259(2):165-92.
    View in: PubMed
    Score: 0.005
  118. Passive cable properties and morphological correlates of neurones in the lateral geniculate nucleus of the cat. J Physiol. 1987 Feb; 383:653-92.
    View in: PubMed
    Score: 0.005
  119. Morphology of retinogeniculate X and Y axon arbors in monocularly enucleated cats. J Comp Neurol. 1986 Sep 08; 251(2):198-215.
    View in: PubMed
    Score: 0.005
  120. Role of competitive interactions in the postnatal development of X and Y retinogeniculate axons. J Comp Neurol. 1986 Sep 08; 251(2):216-39.
    View in: PubMed
    Score: 0.005
  121. The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Exp Brain Res. 1986; 63(1):1-20.
    View in: PubMed
    Score: 0.004
  122. Alpha and beta cells projecting from retina to lamina A of the lateral geniculate nucleus in normal cats, monocularly deprived cats, and young kittens. Exp Brain Res. 1986; 61(2):413-31.
    View in: PubMed
    Score: 0.004
  123. Morphology and physiology of single neurons in the medial interlaminar nucleus of the cat's lateral geniculate nucleus. J Neurosci. 1985 Oct; 5(10):2702-18.
    View in: PubMed
    Score: 0.004
  124. Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the cat. Nature. 1985 Oct 17-23; 317(6038):618-21.
    View in: PubMed
    Score: 0.004
  125. Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. J Comp Neurol. 1985 Mar 08; 233(2):159-89.
    View in: PubMed
    Score: 0.004
  126. Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: projections to area 18, to the 17/18 border region, and to both areas 17 and 18. J Comp Neurol. 1985 Mar 08; 233(2):190-212.
    View in: PubMed
    Score: 0.004
  127. Development of X- and Y-cell retinogeniculate terminations in kittens. Nature. 1984 Jul 19-25; 310(5974):246-9.
    View in: PubMed
    Score: 0.004
  128. Fine structural morphology of identified X- and Y-cells in the cat's lateral geniculate nucleus. Proc R Soc Lond B Biol Sci. 1984 Jun 22; 221(1225):411-36.
    View in: PubMed
    Score: 0.004
  129. Morphological and physiological properties of geniculate W-cells of the cat: a comparison with X- and Y-cells. J Neurophysiol. 1983 Sep; 50(3):582-608.
    View in: PubMed
    Score: 0.004
  130. Development of neuronal response properties in the cat dorsal lateral geniculate nucleus during monocular deprivation. J Neurophysiol. 1983 Jul; 50(1):240-64.
    View in: PubMed
    Score: 0.004
  131. Spatial and temporal sensitivity of normal and amblyopic cats. J Neurophysiol. 1982 Aug; 48(2):372-87.
    View in: PubMed
    Score: 0.003
  132. Development of the electrophysiological properties of Y-cells in the kitten's medial interlaminar nucleus. J Neurosci. 1982 May; 2(5):562-71.
    View in: PubMed
    Score: 0.003
  133. Linear and nonlinear W-cells in C-laminae of the cat's lateral geniculate nucleus. J Neurophysiol. 1982 May; 47(5):869-84.
    View in: PubMed
    Score: 0.003
  134. Organization of visual pathways in normal and visually deprived cats. Physiol Rev. 1982 Apr; 62(2):738-855.
    View in: PubMed
    Score: 0.003
  135. Effects of monocular deprivation on the structure-function relationship of individual neurons in the cat's lateral geniculate nucleus. J Neurosci. 1982 Mar; 2(3):321-30.
    View in: PubMed
    Score: 0.003
  136. Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. J Neurophysiol. 1981 Jul; 46(1):80-129.
    View in: PubMed
    Score: 0.003
  137. Morphology of physiologically identified W-cells in the C laminae of the cat's lateral geniculate nucleus. J Neurosci. 1981 Jun; 1(6):578-84.
    View in: PubMed
    Score: 0.003
  138. Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys. J Neurophysiol. 2001 May; 85(5):2111-29.
    View in: PubMed
    Score: 0.003
  139. Further evidence of an early critical period in the development of the cat's dorsal lateral geniculate nucleus. J Comp Neurol. 1981 Mar 01; 196(3):459-70.
    View in: PubMed
    Score: 0.003
  140. Cellular mechanisms underlying activity patterns in the monkey thalamus during visual behavior. J Neurophysiol. 2000 Oct; 84(4):1982-7.
    View in: PubMed
    Score: 0.003
  141. Spatial and temporal sensitivity of X- and Y-cells in dorsal lateral geniculate nucleus of the cat. J Neurophysiol. 1980 Feb; 43(2):520-41.
    View in: PubMed
    Score: 0.003
  142. Effects of early monocular lid suture on spatial and temporal sensitivity of neurons in dorsal lateral geniculate nucleus of the cat. J Neurophysiol. 1980 Feb; 43(2):542-56.
    View in: PubMed
    Score: 0.003
  143. Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. J Neurophysiol. 2000 Jan; 83(1):588-610.
    View in: PubMed
    Score: 0.003
  144. Effects of visual cortex lesions upon the visual fields of monocularly deprived cats. J Comp Neurol. 1979 Nov 15; 188(2):291-311.
    View in: PubMed
    Score: 0.003
  145. Structure of physiologically identified X and Y cells in the cat's lateral geniculate nucleus. Science. 1979 Jun 08; 204(4397):1114-7.
    View in: PubMed
    Score: 0.003
  146. Encoding of visual information by LGN bursts. J Neurophysiol. 1999 May; 81(5):2558-69.
    View in: PubMed
    Score: 0.003
  147. Functional development of geniculocortical pathways in normal and amblyopic vision. Trans Ophthalmol Soc U K (1962). 1979; 99(3):357-62.
    View in: PubMed
    Score: 0.003
  148. An effect of early monocular lid suture upon the development of X-cells in the cat's lateral geniculate nucleus. Brain Res. 1978 Nov 24; 157(2):346-50.
    View in: PubMed
    Score: 0.003
  149. Effects of early monocular eyelid suture upon development of relay cell classes in the cat's lateral geniculate nucleus. J Comp Neurol. 1978 Oct 15; 181(4):809-31.
    View in: PubMed
    Score: 0.003
  150. Studies of the cat's medial interlaminar nucleus: a subdivision of the dorsal lateral geniculate nucleus. J Comp Neurol. 1978 Oct 01; 181(3):601-14.
    View in: PubMed
    Score: 0.003
  151. Effects of early monocular lid suture upon neurons in the cat's medial interlaminar nucleus. J Comp Neurol. 1978 Oct 01; 181(3):615-25.
    View in: PubMed
    Score: 0.003
  152. Receptive-field properties of neurons in binocular and monocular segments of striate cortex in cats raised with binocular lid suture. J Neurophysiol. 1978 Mar; 41(2):322-37.
    View in: PubMed
    Score: 0.003
  153. Electrophysiological classification of X- and Y-cells in the cat's lateral geniculate nucleus. Vision Res. 1978; 18(4):489-92.
    View in: PubMed
    Score: 0.003
  154. Electrophysiological classification of X- and Y-cells in the cats lateral geniculate nucleus. Vision Res. 1978; 18(9):1261-4.
    View in: PubMed
    Score: 0.003
  155. Conditions for dominance of one eye during competitive development of central connections in visually deprived cats. Brain Res. 1977 Nov 11; 136(2):277-87.
    View in: PubMed
    Score: 0.002
  156. Loss of Y-cells in the lateral geniculate nucleus of monocularly deprived tree shrews. Science. 1977 Aug 19; 197(4305):784-6.
    View in: PubMed
    Score: 0.002
  157. Percentage of relay cells in the cat's lateral geniculate nucleus. Brain Res. 1977 Aug 05; 131(1):167-73.
    View in: PubMed
    Score: 0.002
  158. Visual discriminations of cats with cortical and tectal lesions. J Comp Neurol. 1977 Jul 01; 174(1):79-88.
    View in: PubMed
    Score: 0.002
  159. The effect of cortical lesions upon visual discriminations in binocularly deprived cats. J Comp Neurol. 1977 Jul 01; 174(1):89-94.
    View in: PubMed
    Score: 0.002
  160. Differential effects of early monocular deprivation on binocular and monocular segments of cat striate cortex. J Neurophysiol. 1977 Jul; 40(4):891-903.
    View in: PubMed
    Score: 0.002
  161. The effect of superior colliculus lesions upon the visual fields of cats with cortical ablations. J Comp Neurol. 1977 Mar 15; 172(2):211-29.
    View in: PubMed
    Score: 0.002
  162. The effect of cortical and tectal lesions on the visual fields of binocularly deprived cats. J Comp Neurol. 1977 Mar 15; 172(2):231-45.
    View in: PubMed
    Score: 0.002
  163. Receptive-field characteristics of neurons in cat striate cortex: Changes with visual field eccentricity. J Neurophysiol. 1976 May; 39(3):512-33.
    View in: PubMed
    Score: 0.002
  164. X- and Y-cells in the dorsal lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). Science. 1976 Apr 30; 192(4238):475-7.
    View in: PubMed
    Score: 0.002
  165. Further differences in receptive field properties of simple and complex cells in cat striate cortex. Vision Res. 1976; 16(9):919-27.
    View in: PubMed
    Score: 0.002
  166. Behavioral studies of binocular competition in cats. Vision Res. 1976; 16(12):1479-81.
    View in: PubMed
    Score: 0.002
  167. Evidence that binocular competition affects the postnatal development of Y-cells in the cat's lateral geniculate nucleus. Brain Res. 1975 Dec 19; 100(2):441-4.
    View in: PubMed
    Score: 0.002
  168. Effects of early binocular deprivation on visual input to cat superior colliculus. J Neurophysiol. 1975 Sep; 38(5):1049-59.
    View in: PubMed
    Score: 0.002
  169. X- and Y-cells in the dorsal lateral geniculate nucleus of the tree shrew (Tupaia glis). Brain Res. 1975 Jul 25; 93(1):152-7.
    View in: PubMed
    Score: 0.002
  170. Behavioral and morphological evidence for binocular competition in the postnatal development of the dog's visual system. J Comp Neurol. 1975 May 15; 161(2):183-95.
    View in: PubMed
    Score: 0.002
  171. Rearing with monocular lid suture induces abnormal NADPH-diaphorase staining in the lateral geniculate nucleus of cats. J Comp Neurol. 1994 Dec 08; 350(2):215-28.
    View in: PubMed
    Score: 0.002
  172. Behavioral, electrophysiological and morphological studies of binocular competition in the development of the geniculo-cortical pathways of cats. J Comp Neurol. 1974 Nov 01; 158(1):1-18.
    View in: PubMed
    Score: 0.002
  173. Effects of early monocular deprivation on visual input to cat superior colliculus. J Neurophysiol. 1974 Nov; 37(6):1276-86.
    View in: PubMed
    Score: 0.002
  174. GABAergic projection from the basal forebrain to the visual sector of the thalamic reticular nucleus in the cat. J Comp Neurol. 1994 Oct 22; 348(4):481-510.
    View in: PubMed
    Score: 0.002
  175. Evidence that cholinergic axons from the parabrachial region of the brainstem are the exclusive source of nitric oxide in the lateral geniculate nucleus of the cat. J Comp Neurol. 1993 Aug 15; 334(3):410-30.
    View in: PubMed
    Score: 0.002
  176. The naso-temporal division of the monkey's retina. J Comp Neurol. 1973 Aug; 150(3):333-48.
    View in: PubMed
    Score: 0.002
  177. Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. J Neurophysiol. 1972 Jul; 35(4):518-31.
    View in: PubMed
    Score: 0.002
  178. Loss of a specific cell type from dorsal lateral geniculate nucleus in visually deprived cats. J Neurophysiol. 1972 Jul; 35(4):532-41.
    View in: PubMed
    Score: 0.002
  179. Binocular interaction on cells of the dorsal lateral geniculate nucleus of visually deprived cats. Brain Res. 1972 Feb 11; 37(1):126-31.
    View in: PubMed
    Score: 0.002
  180. Spatial contrast sensitivity of dark-reared cats with striate cortex lesions. J Neurosci. 1984 Oct; 4(10):2419-24.
    View in: PubMed
    Score: 0.001
  181. Lateral geniculate nucleus in dark-reared cats: loss of Y cells without changes in cell size. Science. 1979 Mar 30; 203(4387):1353-5.
    View in: PubMed
    Score: 0.001
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.