The University of Chicago Header Logo

Connection

S. Murray Sherman to Thalamus

This is a "connection" page, showing publications S. Murray Sherman has written about Thalamus.
Connection Strength

13.537
  1. Layer 5 Corticofugal Projections from Diverse Cortical Areas: Variations on a Pattern of Thalamic and Extrathalamic Targets. J Neurosci. 2020 07 22; 40(30):5785-5796.
    View in: PubMed
    Score: 0.675
  2. Thalamocortical Circuit Motifs: A General Framework. Neuron. 2019 09 04; 103(5):762-770.
    View in: PubMed
    Score: 0.639
  3. A Sensorimotor Pathway via Higher-Order Thalamus. J Neurosci. 2019 01 23; 39(4):692-704.
    View in: PubMed
    Score: 0.607
  4. Corticofugal circuits: Communication lines from the cortex to the rest of the brain. J Comp Neurol. 2019 02 15; 527(3):640-650.
    View in: PubMed
    Score: 0.578
  5. Functioning of Circuits Connecting Thalamus and Cortex. Compr Physiol. 2017 03 16; 7(2):713-739.
    View in: PubMed
    Score: 0.539
  6. Thalamus plays a central role in ongoing cortical functioning. Nat Neurosci. 2016 Apr; 19(4):533-41.
    View in: PubMed
    Score: 0.504
  7. The function of metabotropic glutamate receptors in thalamus and cortex. Neuroscientist. 2014 Apr; 20(2):136-49.
    View in: PubMed
    Score: 0.407
  8. Intracortical convergence of layer 6 neurons. Neuroreport. 2012 Aug 22; 23(12):736-40.
    View in: PubMed
    Score: 0.393
  9. Thalamocortical interactions. Curr Opin Neurobiol. 2012 Aug; 22(4):575-9.
    View in: PubMed
    Score: 0.383
  10. Intrinsic modulators of auditory thalamocortical transmission. Hear Res. 2012 May; 287(1-2):43-50.
    View in: PubMed
    Score: 0.383
  11. Properties of the thalamic projection from the posterior medial nucleus to primary and secondary somatosensory cortices in the mouse. Proc Natl Acad Sci U S A. 2011 Nov 01; 108(44):18156-61.
    View in: PubMed
    Score: 0.371
  12. Synaptic properties of thalamic input to the subgranular layers of primary somatosensory and auditory cortices in the mouse. J Neurosci. 2011 Sep 07; 31(36):12738-47.
    View in: PubMed
    Score: 0.367
  13. Distinct functions for direct and transthalamic corticocortical connections. J Neurophysiol. 2011 Sep; 106(3):1068-77.
    View in: PubMed
    Score: 0.362
  14. Functional organization of the thalamic input to the thalamic reticular nucleus. J Neurosci. 2011 May 04; 31(18):6791-9.
    View in: PubMed
    Score: 0.359
  15. On the classification of pathways in the auditory midbrain, thalamus, and cortex. Hear Res. 2011 Jun; 276(1-2):79-87.
    View in: PubMed
    Score: 0.350
  16. Synaptic properties of thalamic input to layers 2/3 and 4 of primary somatosensory and auditory cortices. J Neurophysiol. 2011 Jan; 105(1):279-92.
    View in: PubMed
    Score: 0.347
  17. Specific and nonspecific thalamocortical connectivity in the auditory and somatosensory thalamocortical slices. Neuroreport. 2010 Sep 15; 21(13):861-4.
    View in: PubMed
    Score: 0.343
  18. Branched thalamic afferents: what are the messages that they relay to the cortex? Brain Res Rev. 2011 Jan 07; 66(1-2):205-19.
    View in: PubMed
    Score: 0.341
  19. Topography and physiology of ascending streams in the auditory tectothalamic pathway. Proc Natl Acad Sci U S A. 2010 Jan 05; 107(1):372-7.
    View in: PubMed
    Score: 0.326
  20. The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat Neurosci. 2010 Jan; 13(1):84-8.
    View in: PubMed
    Score: 0.325
  21. Differences in intrinsic properties and local network connectivity of identified layer 5 and layer 6 adult mouse auditory corticothalamic neurons support a dual corticothalamic projection hypothesis. Cereb Cortex. 2009 Dec; 19(12):2810-26.
    View in: PubMed
    Score: 0.311
  22. Synaptic properties of thalamic and intracortical inputs to layer 4 of the first- and higher-order cortical areas in the auditory and somatosensory systems. J Neurophysiol. 2008 Jul; 100(1):317-26.
    View in: PubMed
    Score: 0.291
  23. Differences in response to muscarinic activation between first and higher order thalamic relays. J Neurophysiol. 2007 Dec; 98(6):3538-47.
    View in: PubMed
    Score: 0.281
  24. The thalamus is more than just a relay. Curr Opin Neurobiol. 2007 Aug; 17(4):417-22.
    View in: PubMed
    Score: 0.277
  25. Fewer driver synapses in higher order than in first order thalamic relays. Neuroscience. 2007 Apr 25; 146(1):463-70.
    View in: PubMed
    Score: 0.268
  26. An argument for an olfactory thalamus. Trends Neurosci. 2007 Feb; 30(2):47-53.
    View in: PubMed
    Score: 0.264
  27. Interneurons and triadic circuitry of the thalamus. Trends Neurosci. 2004 Nov; 27(11):670-5.
    View in: PubMed
    Score: 0.229
  28. Differences in projection patterns between large and small corticothalamic terminals. J Comp Neurol. 2004 Jul 26; 475(3):406-15.
    View in: PubMed
    Score: 0.224
  29. Somatosensory corticothalamic projections: distinguishing drivers from modulators. J Neurophysiol. 2004 Oct; 92(4):2185-97.
    View in: PubMed
    Score: 0.221
  30. The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29; 357(1428):1695-708.
    View in: PubMed
    Score: 0.201
  31. The thalamus as a monitor of motor outputs. Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29; 357(1428):1809-21.
    View in: PubMed
    Score: 0.201
  32. Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron. 2002 Jan 17; 33(2):163-75.
    View in: PubMed
    Score: 0.188
  33. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 2001 Feb; 24(2):122-6.
    View in: PubMed
    Score: 0.176
  34. Thalamic relay functions. Prog Brain Res. 2001; 134:51-69.
    View in: PubMed
    Score: 0.175
  35. A new slant on the development of orientation selectivity. Nat Neurosci. 2000 Jun; 3(6):525-7.
    View in: PubMed
    Score: 0.168
  36. Glutamate locally activates dendritic outputs of thalamic interneurons. Nature. 1998 Jul 30; 394(6692):478-82.
    View in: PubMed
    Score: 0.148
  37. On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". Proc Natl Acad Sci U S A. 1998 Jun 09; 95(12):7121-6.
    View in: PubMed
    Score: 0.147
  38. My prolonged collaboration with Ray Guillery. Eur J Neurosci. 2019 04; 49(7):928-937.
    View in: PubMed
    Score: 0.145
  39. Functional organization of thalamocortical relays. J Neurophysiol. 1996 Sep; 76(3):1367-95.
    View in: PubMed
    Score: 0.130
  40. Morphology of physiologically identified retinal X and Y axons in the cat's thalamus and midbrain as revealed by intraaxonal injection of biocytin. J Comp Neurol. 1995 Apr 17; 354(4):583-607.
    View in: PubMed
    Score: 0.118
  41. Latency variability of responses to visual stimuli in cells of the cat's lateral geniculate nucleus. Exp Brain Res. 1995; 105(1):7-17.
    View in: PubMed
    Score: 0.116
  42. Advances in understanding mechanisms of thalamic relays in cognition and behavior. J Neurosci. 2014 Nov 12; 34(46):15340-6.
    View in: PubMed
    Score: 0.115
  43. Activation of both Group I and Group II metabotropic glutamatergic receptors suppress retinogeniculate transmission. Neuroscience. 2013 Jul 09; 242:78-84.
    View in: PubMed
    Score: 0.102
  44. Functional significance of synaptic terminal size in glutamatergic sensory pathways in thalamus and cortex. J Physiol. 2013 Jul 01; 591(13):3125-31.
    View in: PubMed
    Score: 0.101
  45. N-methyl-D-aspartate receptors contribute to excitatory postsynaptic potentials of cat lateral geniculate neurons recorded in thalamic slices. Proc Natl Acad Sci U S A. 1990 Jun; 87(12):4548-52.
    View in: PubMed
    Score: 0.084
  46. Detectability of excitatory versus inhibitory drive in an integrate-and-fire-or-burst thalamocortical relay neuron model. J Neurosci. 2002 Dec 01; 22(23):10242-50.
    View in: PubMed
    Score: 0.050
  47. Dynamics of low-threshold spike activation in relay neurons of the cat lateral geniculate nucleus. J Neurosci. 2001 Feb 01; 21(3):1022-32.
    View in: PubMed
    Score: 0.044
  48. Cellular mechanisms underlying activity patterns in the monkey thalamus during visual behavior. J Neurophysiol. 2000 Oct; 84(4):1982-7.
    View in: PubMed
    Score: 0.043
  49. Current clamp and modeling studies of low-threshold calcium spikes in cells of the cat's lateral geniculate nucleus. J Neurophysiol. 1999 May; 81(5):2360-73.
    View in: PubMed
    Score: 0.039
  50. Brain-stem modulation of the response properties of cells in the cat's perigeniculate nucleus. Vis Neurosci. 1994 Jul-Aug; 11(4):781-91.
    View in: PubMed
    Score: 0.028
  51. Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2+ conductance. J Neurophysiol. 1992 Dec; 68(6):2185-98.
    View in: PubMed
    Score: 0.025
  52. Rapid and sensitive mapping of long-range connections in vitro using flavoprotein autofluorescence imaging combined with laser photostimulation. J Neurophysiol. 2009 Jun; 101(6):3325-40.
    View in: PubMed
    Score: 0.019
  53. Percentage of relay cells in the cat's lateral geniculate nucleus. Brain Res. 1977 Aug 05; 131(1):167-73.
    View in: PubMed
    Score: 0.009
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.