The University of Chicago Header Logo

Connection

Robert Nishikawa to Sensitivity and Specificity

This is a "connection" page, showing publications Robert Nishikawa has written about Sensitivity and Specificity.
Connection Strength

1.324
  1. Locally adaptive decision in detection of clustered microcalcifications in mammograms. Phys Med Biol. 2018 02 15; 63(4):045014.
    View in: PubMed
    Score: 0.109
  2. Importance of Better Human-Computer Interaction in the Era of Deep Learning: Mammography Computer-Aided Diagnosis as a Use Case. J Am Coll Radiol. 2018 01; 15(1 Pt A):49-52.
    View in: PubMed
    Score: 0.107
  3. CADe for early detection of breast cancer-current status and why we need to continue to explore new approaches. Acad Radiol. 2014 Oct; 21(10):1320-1.
    View in: PubMed
    Score: 0.085
  4. Estimating sensitivity and specificity for technology assessment based on observer studies. Acad Radiol. 2013 Jul; 20(7):825-30.
    View in: PubMed
    Score: 0.078
  5. A comparison study of image features between FFDM and film mammogram images. Med Phys. 2012 Jul; 39(7):4386-94.
    View in: PubMed
    Score: 0.074
  6. Clinically missed cancer: how effectively can radiologists use computer-aided detection? AJR Am J Roentgenol. 2012 Mar; 198(3):708-16.
    View in: PubMed
    Score: 0.072
  7. Retrieval boosted computer-aided diagnosis of clustered microcalcifications for breast cancer. Med Phys. 2012 Feb; 39(2):676-85.
    View in: PubMed
    Score: 0.072
  8. Detection of clustered microcalcifications using spatial point process modeling. Phys Med Biol. 2011 Jan 07; 56(1):1-17.
    View in: PubMed
    Score: 0.066
  9. Comparison of power spectra for tomosynthesis projections and reconstructed images. Med Phys. 2009 May; 36(5):1753-8.
    View in: PubMed
    Score: 0.059
  10. Comparison of soft-copy and hard-copy reading for full-field digital mammography. Radiology. 2009 Apr; 251(1):41-9.
    View in: PubMed
    Score: 0.059
  11. Identification of simulated microcalcifications in white noise and mammographic backgrounds. Med Phys. 2006 Aug; 33(8):2905-11.
    View in: PubMed
    Score: 0.049
  12. Computer-aided detection, in its present form, is not an effective aid for screening mammography. For the proposition. Med Phys. 2006 Apr; 33(4):811-2.
    View in: PubMed
    Score: 0.048
  13. Radial gradient-based segmentation of mammographic microcalcifications: observer evaluation and effect on CAD performance. Med Phys. 2004 Sep; 31(9):2648-57.
    View in: PubMed
    Score: 0.043
  14. The use of a priori information in the detection of mammographic microcalcifications to improve their classification. Med Phys. 2003 May; 30(5):823-31.
    View in: PubMed
    Score: 0.039
  15. A support vector machine approach for detection of microcalcifications. IEEE Trans Med Imaging. 2002 Dec; 21(12):1552-63.
    View in: PubMed
    Score: 0.038
  16. Computer-aided diagnosis complements full-field digital mammography. Diagn Imaging (San Franc). 1999 Sep; 21(9):47-51, 75.
    View in: PubMed
    Score: 0.030
  17. Optimization and FROC analysis of rule-based detection schemes using a multiobjective approach. IEEE Trans Med Imaging. 1998 Dec; 17(6):1089-93.
    View in: PubMed
    Score: 0.029
  18. Quantitative comparison of clustered microcalcifications in for-presentation and for-processing mammograms in full-field digital mammography. Med Phys. 2017 Jul; 44(7):3726-3738.
    View in: PubMed
    Score: 0.026
  19. A receiver operating characteristic partial area index for highly sensitive diagnostic tests. Radiology. 1996 Dec; 201(3):745-50.
    View in: PubMed
    Score: 0.025
  20. Improving the accuracy in detection of clustered microcalcifications with a context-sensitive classification model. Med Phys. 2016 Jan; 43(1):159.
    View in: PubMed
    Score: 0.023
  21. Stereoscopic digital mammography: improved specificity and reduced rate of recall in a prospective clinical trial. Radiology. 2013 Jan; 266(1):81-8.
    View in: PubMed
    Score: 0.019
  22. Assessing the stand-alone sensitivity of computer-aided detection with cancer cases from the Digital Mammographic Imaging Screening Trial. AJR Am J Roentgenol. 2012 Sep; 199(3):W392-401.
    View in: PubMed
    Score: 0.019
  23. Automated detection of mass lesions in dedicated breast CT: a preliminary study. Med Phys. 2012 Feb; 39(2):866-73.
    View in: PubMed
    Score: 0.018
  24. Contrast enhancement of hepatic hemangiomas on multiphase MDCT: Can we diagnose hepatic hemangiomas by comparing enhancement with blood pool? AJR Am J Roentgenol. 2010 Aug; 195(2):381-6.
    View in: PubMed
    Score: 0.016
  25. Automated detection of microcalcification clusters for digital breast tomosynthesis using projection data only: a preliminary study. Med Phys. 2008 Apr; 35(4):1486-93.
    View in: PubMed
    Score: 0.014
  26. Comparison of independent double readings and computer-aided diagnosis (CAD) for the diagnosis of breast calcifications. Acad Radiol. 2006 Jan; 13(1):84-94.
    View in: PubMed
    Score: 0.012
  27. Relevance vector machine for automatic detection of clustered microcalcifications. IEEE Trans Med Imaging. 2005 Oct; 24(10):1278-85.
    View in: PubMed
    Score: 0.012
  28. A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications. IEEE Trans Med Imaging. 2005 Mar; 24(3):371-80.
    View in: PubMed
    Score: 0.011
  29. Computerized detection of mass lesions in digital breast tomosynthesis images using two- and three dimensional radial gradient index segmentation. Technol Cancer Res Treat. 2004 Oct; 3(5):437-41.
    View in: PubMed
    Score: 0.011
  30. A similarity learning approach to content-based image retrieval: application to digital mammography. IEEE Trans Med Imaging. 2004 Oct; 23(10):1233-44.
    View in: PubMed
    Score: 0.011
  31. Investigation of physical image quality indices of a bone densitometry system. Med Phys. 2004 Apr; 31(4):873-81.
    View in: PubMed
    Score: 0.010
  32. Potential of computer-aided diagnosis to reduce variability in radiologists' interpretations of mammograms depicting microcalcifications. Radiology. 2001 Sep; 220(3):787-94.
    View in: PubMed
    Score: 0.009
  33. Radiologists' preferences for digital mammographic display. The International Digital Mammography Development Group. Radiology. 2000 Sep; 216(3):820-30.
    View in: PubMed
    Score: 0.008
  34. Improving breast cancer diagnosis with computer-aided diagnosis. Acad Radiol. 1999 Jan; 6(1):22-33.
    View in: PubMed
    Score: 0.007
  35. A genetic algorithm-based method for optimizing the performance of a computer-aided diagnosis scheme for detection of clustered microcalcifications in mammograms. Med Phys. 1998 Sep; 25(9):1613-20.
    View in: PubMed
    Score: 0.007
  36. Analysis of methods for reducing false positives in the automated detection of clustered microcalcifications in mammograms. Med Phys. 1998 Aug; 25(8):1502-6.
    View in: PubMed
    Score: 0.007
  37. Malignant and benign clustered microcalcifications: automated feature analysis and classification. Radiology. 1996 Mar; 198(3):671-8.
    View in: PubMed
    Score: 0.006
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.