The University of Chicago Header Logo

Connection

Mahesh P. Gupta to Sirtuins

This is a "connection" page, showing publications Mahesh P. Gupta has written about Sirtuins.
Connection Strength

4.665
  1. Is nuclear sirtuin SIRT6 a master regulator of immune function? Am J Physiol Endocrinol Metab. 2021 03 01; 320(3):E399-E414.
    View in: PubMed
    Score: 0.757
  2. Cellular mechanisms promoting cachexia and how they are opposed by sirtuins 1. Can J Physiol Pharmacol. 2019 Apr; 97(4):235-245.
    View in: PubMed
    Score: 0.673
  3. The histone deacetylase SIRT6 blocks myostatin expression and development of muscle atrophy. Sci Rep. 2017 09 19; 7(1):11877.
    View in: PubMed
    Score: 0.605
  4. Role of Sirtuins in Regulating Pathophysiology of the Heart. Trends Endocrinol Metab. 2016 08; 27(8):563-573.
    View in: PubMed
    Score: 0.552
  5. Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ Res. 2014 Jan 17; 114(2):368-78.
    View in: PubMed
    Score: 0.469
  6. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol. 2008 Oct; 28(20):6384-401.
    View in: PubMed
    Score: 0.322
  7. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem. 2005 Dec 30; 280(52):43121-30.
    View in: PubMed
    Score: 0.264
  8. The nuclear sirtuin SIRT6 protects the heart from developing aging-associated myocyte senescence and cardiac hypertrophy. Aging (Albany NY). 2021 05 02; 13(9):12334-12358.
    View in: PubMed
    Score: 0.194
  9. The nuclear and mitochondrial sirtuins, Sirt6 and Sirt3, regulate each other's activity and protect the heart from developing obesity-mediated diabetic cardiomyopathy. FASEB J. 2019 10; 33(10):10872-10888.
    View in: PubMed
    Score: 0.172
  10. Posttranslational modification of Sirt6 activity by peroxynitrite. Free Radic Biol Med. 2015 Feb; 79:176-85.
    View in: PubMed
    Score: 0.125
  11. SIRT6 promotes COX-2 expression and acts as an oncogene in skin cancer. Cancer Res. 2014 Oct 15; 74(20):5925-33.
    View in: PubMed
    Score: 0.124
  12. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med. 2012 Nov; 18(11):1643-50.
    View in: PubMed
    Score: 0.108
  13. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009 Sep; 119(9):2758-71.
    View in: PubMed
    Score: 0.086
  14. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol Cell Biol. 2009 Aug; 29(15):4116-29.
    View in: PubMed
    Score: 0.085
  15. Activation of SIRT1, a class III histone deacetylase, contributes to fructose feeding-mediated induction of the alpha-myosin heavy chain expression. Am J Physiol Heart Circ Physiol. 2008 Mar; 294(3):H1388-97.
    View in: PubMed
    Score: 0.077
  16. Sirt3 protects mitochondrial DNA damage and blocks the development of doxorubicin-induced cardiomyopathy in mice. Am J Physiol Heart Circ Physiol. 2016 Apr 15; 310(8):H962-72.
    View in: PubMed
    Score: 0.034
  17. Poly(ADP-ribose) polymerase-1-deficient mice are protected from angiotensin II-induced cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2006 Oct; 291(4):H1545-53.
    View in: PubMed
    Score: 0.017
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.