The University of Chicago Header Logo

Connection

Neil H. Shubin to Animals

This is a "connection" page, showing publications Neil H. Shubin has written about Animals.
Connection Strength

1.221
  1. Molecular basis of urostyle development in frogs: genes and gene regulation underlying an evolutionary novelty. Open Biol. 2024 Aug; 14(8):240111.
    View in: PubMed
    Score: 0.060
  2. The axial skeleton of Tiktaalik roseae. Proc Natl Acad Sci U S A. 2024 Apr 09; 121(15):e2316106121.
    View in: PubMed
    Score: 0.058
  3. A new elpistostegalian from the Late Devonian of the Canadian Arctic. Nature. 2022 08; 608(7923):563-568.
    View in: PubMed
    Score: 0.052
  4. The Shh/Gli3 gene regulatory network precedes the origin of paired fins and reveals the deep homology between distal fins and digits. Proc Natl Acad Sci U S A. 2021 11 16; 118(46).
    View in: PubMed
    Score: 0.050
  5. Evolution: The deep genetic roots of tetrapod-specific traits. Curr Biol. 2021 05 24; 31(10):R467-R469.
    View in: PubMed
    Score: 0.048
  6. The feeding system of Tiktaalik roseae: an intermediate between suction feeding and biting. Proc Natl Acad Sci U S A. 2021 02 16; 118(7).
    View in: PubMed
    Score: 0.047
  7. Fin ray patterns at the fin-to-limb transition. Proc Natl Acad Sci U S A. 2020 01 21; 117(3):1612-1620.
    View in: PubMed
    Score: 0.043
  8. Digits and fin rays share common developmental histories. Nature. 2016 09 08; 537(7619):225-228.
    View in: PubMed
    Score: 0.034
  9. Regulatory evolution of Tbx5 and the origin of paired appendages. Proc Natl Acad Sci U S A. 2016 09 06; 113(36):10115-20.
    View in: PubMed
    Score: 0.034
  10. Cis-regulatory programs in the development and evolution of vertebrate paired appendages. Semin Cell Dev Biol. 2016 09; 57:31-39.
    View in: PubMed
    Score: 0.033
  11. Molecular mechanisms underlying the exceptional adaptations of batoid fins. Proc Natl Acad Sci U S A. 2015 Dec 29; 112(52):15940-5.
    View in: PubMed
    Score: 0.033
  12. Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution. Proc Natl Acad Sci U S A. 2015 Dec 22; 112(51):E7101-9.
    View in: PubMed
    Score: 0.033
  13. Organogenesis in deep time: A problem in genomics, development, and paleontology. Proc Natl Acad Sci U S A. 2015 Apr 21; 112(16):4871-6.
    View in: PubMed
    Score: 0.031
  14. QnAs with Neil Shubin. Proc Natl Acad Sci U S A. 2014 Jan 21; 111(3):881-2.
    View in: PubMed
    Score: 0.029
  15. Pelvic girdle and fin of Tiktaalik roseae. Proc Natl Acad Sci U S A. 2014 Jan 21; 111(3):893-9.
    View in: PubMed
    Score: 0.029
  16. The origin of the tetrapod limb: from expeditions to enhancers. Trends Genet. 2013 Jul; 29(7):419-26.
    View in: PubMed
    Score: 0.027
  17. Farish A. Jenkins Jr (1940-2012). Nature. 2012 Dec 06; 492(7427):42.
    View in: PubMed
    Score: 0.027
  18. Late Jurassic salamandroid from western Liaoning, China. Proc Natl Acad Sci U S A. 2012 Apr 10; 109(15):5767-72.
    View in: PubMed
    Score: 0.025
  19. Appendage expression driven by the Hoxd Global Control Region is an ancient gnathostome feature. Proc Natl Acad Sci U S A. 2011 Aug 02; 108(31):12782-6.
    View in: PubMed
    Score: 0.024
  20. Salamander limb development: integrating genes, morphology, and fossils. Dev Dyn. 2011 May; 240(5):1087-99.
    View in: PubMed
    Score: 0.024
  21. Holocephalan embryos provide evidence for gill arch appendage reduction and opercular evolution in cartilaginous fishes. Proc Natl Acad Sci U S A. 2011 Jan 25; 108(4):1507-12.
    View in: PubMed
    Score: 0.023
  22. The evolution of gnathostome development: Insight from chondrichthyan embryology. Genesis. 2009 Dec; 47(12):825-41.
    View in: PubMed
    Score: 0.022
  23. Chondrogenesis and homology of the visceral skeleton in the little skate, Leucoraja erinacea (Chondrichthyes: Batoidea). J Morphol. 2009 May; 270(5):628-43.
    View in: PubMed
    Score: 0.021
  24. Shared developmental mechanisms pattern the vertebrate gill arch and paired fin skeletons. Proc Natl Acad Sci U S A. 2009 Apr 07; 106(14):5720-4.
    View in: PubMed
    Score: 0.021
  25. Deep homology and the origins of evolutionary novelty. Nature. 2009 Feb 12; 457(7231):818-23.
    View in: PubMed
    Score: 0.020
  26. This old body. Sci Am. 2009 Jan; 300(1):64-7.
    View in: PubMed
    Score: 0.020
  27. The cranial endoskeleton of Tiktaalik roseae. Nature. 2008 Oct 16; 455(7215):925-9.
    View in: PubMed
    Score: 0.020
  28. An autopodial-like pattern of Hox expression in the fins of a basal actinopterygian fish. Nature. 2007 May 24; 447(7143):473-6.
    View in: PubMed
    Score: 0.018
  29. Sonic hedgehog function in chondrichthyan fins and the evolution of appendage patterning. Nature. 2007 Jan 18; 445(7125):311-4.
    View in: PubMed
    Score: 0.018
  30. The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature. 2006 Apr 06; 440(7085):764-71.
    View in: PubMed
    Score: 0.017
  31. Limb chondrogenesis of the seepage salamander, Desmognathus aeneus (amphibia: plethodontidae). J Morphol. 2005 Jul; 265(1):87-101.
    View in: PubMed
    Score: 0.016
  32. Paleoinspired robotics as an experimental approach to the history of life. Sci Robot. 2024 Oct 23; 9(95):eadn1125.
    View in: PubMed
    Score: 0.015
  33. Evolutionary biology: lost and found. Nature. 2004 Apr 15; 428(6984):703-4.
    View in: PubMed
    Score: 0.015
  34. The early evolution of the tetrapod humerus. Science. 2004 Apr 02; 304(5667):90-3.
    View in: PubMed
    Score: 0.015
  35. Identification of ancestral gnathostome Gli3 enhancers with activity in mammals. Dev Growth Differ. 2024 Jan; 66(1):75-88.
    View in: PubMed
    Score: 0.014
  36. The origin of blinking in both mudskippers and tetrapods is linked to life on land. Proc Natl Acad Sci U S A. 2023 05 02; 120(18):e2220404120.
    View in: PubMed
    Score: 0.014
  37. The little skate genome and the evolutionary emergence of wing-like fins. Nature. 2023 04; 616(7957):495-503.
    View in: PubMed
    Score: 0.014
  38. Earliest known crown-group salamanders. Nature. 2003 Mar 27; 422(6930):424-8.
    View in: PubMed
    Score: 0.014
  39. Origin of evolutionary novelty: examples from limbs. J Morphol. 2002 Apr; 252(1):15-28.
    View in: PubMed
    Score: 0.013
  40. An Fgf-Shh positive feedback loop drives growth in developing unpaired fins. Proc Natl Acad Sci U S A. 2022 03 08; 119(10):e2120150119.
    View in: PubMed
    Score: 0.013
  41. Late Jurassic salamanders from northern China. Nature. 2001 Mar 29; 410(6828):574-7.
    View in: PubMed
    Score: 0.012
  42. Comparative genomic analysis of human GLI2 locus using slowly evolving fish revealed the ancestral gnathostome set of early developmental enhancers. Dev Dyn. 2021 05; 250(5):669-683.
    View in: PubMed
    Score: 0.012
  43. Salamander-like tail regeneration in the West African lungfish. Proc Biol Sci. 2020 09 30; 287(1935):20192939.
    View in: PubMed
    Score: 0.011
  44. Ontogeny of the anuran urostyle and the developmental context of evolutionary novelty. Proc Natl Acad Sci U S A. 2020 02 11; 117(6):3034-3044.
    View in: PubMed
    Score: 0.011
  45. The evolutionary origins and diversity of the neuromuscular system of paired appendages in batoids. Proc Biol Sci. 2019 11 06; 286(1914):20191571.
    View in: PubMed
    Score: 0.011
  46. Feeding kinematics and morphology of the alligator gar (Atractosteus spatula, Lacépède, 1803). J Morphol. 2019 10; 280(10):1548-1570.
    View in: PubMed
    Score: 0.011
  47. Chemokine C-C motif ligand 33 is a key regulator of teleost fish barbel development. Proc Natl Acad Sci U S A. 2018 05 29; 115(22):E5018-E5027.
    View in: PubMed
    Score: 0.010
  48. A conserved Shh cis-regulatory module highlights a common developmental origin of unpaired and paired fins. Nat Genet. 2018 04; 50(4):504-509.
    View in: PubMed
    Score: 0.010
  49. Fossils, genes and the evolution of animal limbs. Nature. 1997 Aug 14; 388(6643):639-48.
    View in: PubMed
    Score: 0.009
  50. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet. 2016 Apr; 48(4):427-37.
    View in: PubMed
    Score: 0.008
  51. Deep conservation of wrist and digit enhancers in fish. Proc Natl Acad Sci U S A. 2015 Jan 20; 112(3):803-8.
    View in: PubMed
    Score: 0.008
  52. The African coelacanth genome provides insights into tetrapod evolution. Nature. 2013 Apr 18; 496(7445):311-6.
    View in: PubMed
    Score: 0.007
  53. Behavioral evidence for the evolution of walking and bounding before terrestriality in sarcopterygian fishes. Proc Natl Acad Sci U S A. 2011 Dec 27; 108(52):21146-51.
    View in: PubMed
    Score: 0.006
  54. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature. 2006 Apr 06; 440(7085):757-63.
    View in: PubMed
    Score: 0.004
  55. Pectoral fin and girdle development in the basal actinopterygians Polyodon spathula and Acipenser transmontanus. J Morphol. 2004 Nov; 262(2):608-28.
    View in: PubMed
    Score: 0.004
  56. Expression of HoxD genes in developing and regenerating axolotl limbs. Dev Biol. 1998 Aug 15; 200(2):225-33.
    View in: PubMed
    Score: 0.002
  57. Haramiyids and Triassic mammalian evolution. Nature. 1997 Feb 20; 385(6618):715-8.
    View in: PubMed
    Score: 0.002
  58. New early Jurassic tetrapod assemblages constrain Triassic-Jurassic tetrapod extinction event. Science. 1987 Aug 28; 237(4818):1025-9.
    View in: PubMed
    Score: 0.001
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.