The University of Chicago Header Logo

Connection

Roberto M. Lang to Algorithms

This is a "connection" page, showing publications Roberto M. Lang has written about Algorithms.
Connection Strength

3.520
  1. Deep Learning-Based Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction: A Point-of-Care Solution. Circ Cardiovasc Imaging. 2021 06; 14(6):e012293.
    View in: PubMed
    Score: 0.447
  2. Three-Dimensional Echocardiographic Automated Quantification of Left Heart Chamber Volumes Using an Adaptive Analytics Algorithm: Feasibility and Impact of Image Quality in Nonselected Patients. J Am Soc Echocardiogr. 2017 Sep; 30(9):879-885.
    View in: PubMed
    Score: 0.340
  3. Transthoracic 3D Echocardiographic Left Heart Chamber Quantification Using an Automated Adaptive Analytics Algorithm. JACC Cardiovasc Imaging. 2016 07; 9(7):769-782.
    View in: PubMed
    Score: 0.316
  4. Visualization and measurement of mitral valve chordae tendineae using three-dimensional transesophageal echocardiography from the transgastric approach. J Am Soc Echocardiogr. 2015 Apr; 28(4):449-54.
    View in: PubMed
    Score: 0.288
  5. A new definition for an old entity: improved definition of mitral valve prolapse using three-dimensional echocardiography and color-coded parametric models. J Am Soc Echocardiogr. 2014 Jan; 27(1):8-16.
    View in: PubMed
    Score: 0.262
  6. Rapid estimation of left ventricular function using echocardiographic speckle-tracking of mitral annular displacement. J Am Soc Echocardiogr. 2010 May; 23(5):511-5.
    View in: PubMed
    Score: 0.206
  7. Diagnostic value of parametric imaging of left ventricular wall motion from contrast-enhanced echocardiograms in patients with poor acoustic windows. J Am Soc Echocardiogr. 2009 Mar; 22(3):276-83.
    View in: PubMed
    Score: 0.190
  8. Effects of aging on left atrial function assessed by two-dimensional speckle tracking echocardiography. J Am Soc Echocardiogr. 2009 Jan; 22(1):70-5.
    View in: PubMed
    Score: 0.189
  9. Evaluation of left ventricular systolic function using automated angle-independent motion tracking of mitral annular displacement. J Am Soc Echocardiogr. 2005 Dec; 18(12):1266-9.
    View in: PubMed
    Score: 0.152
  10. Utility of a Deep-Learning Algorithm to Guide Novices to Acquire Echocardiograms for Limited Diagnostic Use. JAMA Cardiol. 2021 06 01; 6(6):624-632.
    View in: PubMed
    Score: 0.111
  11. Three-dimensional echocardiographic quantification of the left-heart chambers using an automated adaptive analytics algorithm: multicentre validation study. Eur Heart J Cardiovasc Imaging. 2018 01 01; 19(1):47-58.
    View in: PubMed
    Score: 0.088
  12. Invasive Validation of the Echocardiographic Assessment of Left Ventricular Filling Pressures Using the 2016 Diastolic Guidelines: Head-to-Head Comparison with the 2009 Guidelines. J Am Soc Echocardiogr. 2018 01; 31(1):79-88.
    View in: PubMed
    Score: 0.087
  13. Feasibility and Accuracy of Automated Software for Transthoracic Three-Dimensional Left Ventricular Volume and Function Analysis: Comparisons with Two-Dimensional Echocardiography, Three-Dimensional Transthoracic Manual Method, and Cardiac Magnetic Resonance Imaging. J Am Soc Echocardiogr. 2017 Nov; 30(11):1049-1058.
    View in: PubMed
    Score: 0.086
  14. 3D echocardiographic analysis of aortic annulus for transcatheter aortic valve replacement using novel aortic valve quantification software: Comparison with computed tomography. Echocardiography. 2017 May; 34(5):690-699.
    View in: PubMed
    Score: 0.083
  15. Semi-automated segmentation and quantification of mitral annulus and leaflets from transesophageal 3-D echocardiographic images. Ultrasound Med Biol. 2015 Jan; 41(1):251-67.
    View in: PubMed
    Score: 0.070
  16. Myocardial perfusion: near-automated evaluation from contrast-enhanced MR images obtained at rest and during vasodilator stress. Radiology. 2012 Nov; 265(2):576-83.
    View in: PubMed
    Score: 0.061
  17. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging. 2012 Jan; 13(1):1-46.
    View in: PubMed
    Score: 0.058
  18. Feasibility of left ventricular shape analysis from transthoracic real-time 3-D echocardiographic images. Ultrasound Med Biol. 2009 Dec; 35(12):1953-62.
    View in: PubMed
    Score: 0.050
  19. Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur Heart J. 2009 Jul; 30(13):1565-73.
    View in: PubMed
    Score: 0.048
  20. Quantitative diagnosis of stress-induced myocardial ischemia using analysis of contrast echocardiographic parametric perfusion images. Eur J Echocardiogr. 2006 Jun; 7(3):217-25.
    View in: PubMed
    Score: 0.037
  21. Effects of aging on left atrial reservoir, conduit, and booster pump function: a multi-institution acoustic quantification study. Heart. 2001 Mar; 85(3):272-7.
    View in: PubMed
    Score: 0.027
  22. Machine learning based quantification of ejection and filling parameters by fully automated dynamic measurement of left ventricular volumes from cardiac magnetic resonance images. Magn Reson Imaging. 2020 04; 67:28-32.
    View in: PubMed
    Score: 0.025
  23. Parent-of-origin effects on quantitative phenotypes in a large Hutterite pedigree. Commun Biol. 2019; 2:28.
    View in: PubMed
    Score: 0.024
  24. Automated, machine learning-based, 3D echocardiographic quantification of left ventricular mass. Echocardiography. 2019 02; 36(2):312-319.
    View in: PubMed
    Score: 0.024
  25. Objective echocardiographic evaluation of the cardiovascular system: state of the art. Curr Opin Cardiol. 1997 Nov; 12(6):553-60.
    View in: PubMed
    Score: 0.022
  26. Segmental analysis of color kinesis images: new method for quantification of the magnitude and timing of endocardial motion during left ventricular systole and diastole. Circulation. 1997 Apr 15; 95(8):2082-97.
    View in: PubMed
    Score: 0.021
  27. Three-Dimensional Echocardiographic Assessment of Left Heart Chamber Size and Function with Fully Automated Quantification Software in Patients with Atrial Fibrillation. J Am Soc Echocardiogr. 2016 10; 29(10):955-965.
    View in: PubMed
    Score: 0.020
  28. A novel profile/view ordering with a non-convex star shutter for high-resolution 3D volumetric T1 mapping under multiple breath-holds. Magn Reson Med. 2017 06; 77(6):2215-2224.
    View in: PubMed
    Score: 0.020
  29. Improved quantification of left ventricular function by applying signal averaging to echocardiographic acoustic quantification. J Am Soc Echocardiogr. 1995 Sep-Oct; 8(5 Pt 1):679-89.
    View in: PubMed
    Score: 0.019
  30. Reconstruction of the descending thoracic aorta by multiview compounding of 3-D transesophageal echocardiographic aortic data sets for improved examination and quantification of atheroma burden. Ultrasound Med Biol. 2015 May; 41(5):1263-76.
    View in: PubMed
    Score: 0.018
  31. Three-dimensional left ventricular segmentation from magnetic resonance imaging for patient-specific modelling purposes. Europace. 2014 Nov; 16 Suppl 4:iv96-iv101.
    View in: PubMed
    Score: 0.018
  32. Identifying errors and inconsistencies in real time while using facilitated echocardiographic reporting. J Am Soc Echocardiogr. 2015 Jan; 28(1):88-92.e1.
    View in: PubMed
    Score: 0.018
  33. Measurement of regional elastic properties of the human aorta. A new application of transesophageal echocardiography with automated border detection and calibrated subclavian pulse tracings. Circulation. 1994 Oct; 90(4):1875-82.
    View in: PubMed
    Score: 0.018
  34. Assessment of right ventricular function using echocardiographic speckle tracking of the tricuspid annular motion: comparison with cardiac magnetic resonance. Echocardiography. 2012; 29(1):19-24.
    View in: PubMed
    Score: 0.014
  35. Reproducibility and inter-vendor variability of left ventricular deformation measurements by three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr. 2011 Aug; 24(8):878-85.
    View in: PubMed
    Score: 0.014
  36. Volumetric quantification of myocardial perfusion using analysis of multi-detector computed tomography 3D datasets: comparison with nuclear perfusion imaging. Eur Radiol. 2010 Feb; 20(2):337-47.
    View in: PubMed
    Score: 0.012
  37. Combined assessment of coronary anatomy and myocardial perfusion using multidetector computed tomography for the evaluation of coronary artery disease. Am J Cardiol. 2009 Jun 01; 103(11):1487-94.
    View in: PubMed
    Score: 0.012
  38. Volumetric analysis of regional left ventricular function with real-time three-dimensional echocardiography: validation by magnetic resonance and clinical utility testing. Heart. 2007 May; 93(5):572-8.
    View in: PubMed
    Score: 0.010
  39. Quantification of regional myocardial perfusion using semiautomated translation-free analysis of contrast-enhanced power modulation images. J Am Soc Echocardiogr. 2003 Feb; 16(2):116-23.
    View in: PubMed
    Score: 0.008
  40. Smooth muscle relaxation and local hydraulic impedance properties of the aorta. J Appl Physiol (1985). 2001 Jun; 90(6):2427-38.
    View in: PubMed
    Score: 0.007
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.