The University of Chicago Header Logo

Connection

Gregory Karczmar to Humans

This is a "connection" page, showing publications Gregory Karczmar has written about Humans.
Connection Strength

1.083
  1. Self-supervised multicontrast super-resolution for diffusion-weighted prostate MRI. Magn Reson Med. 2024 Jul; 92(1):319-331.
    View in: PubMed
    Score: 0.030
  2. Four-quadrant vector mapping of hybrid multidimensional MRI data for the diagnosis of prostate cancer. Med Phys. 2024 Mar; 51(3):2057-2065.
    View in: PubMed
    Score: 0.029
  3. Bilateral asymmetry of quantitative parenchymal kinetics at ultrafast DCE-MRI predict response to neoadjuvant chemotherapy in patients with HER2+ breast cancer. Magn Reson Imaging. 2023 Dec; 104:9-15.
    View in: PubMed
    Score: 0.029
  4. Parametric maps of spatial two-tissue compartment model for prostate dynamic contrast enhanced MRI - comparison with the standard tofts model in the diagnosis of prostate cancer. Phys Eng Sci Med. 2023 Sep; 46(3):1215-1226.
    View in: PubMed
    Score: 0.029
  5. Pharmacokinetic Analysis of Enhancement-Constrained Acceleration (ECA) reconstruction-based high temporal resolution breast DCE-MRI. PLoS One. 2023; 18(6):e0286123.
    View in: PubMed
    Score: 0.029
  6. Directional and inter-acquisition variability in diffusion-weighted imaging and editing for restricted diffusion. Magn Reson Med. 2022 11; 88(5):2298-2310.
    View in: PubMed
    Score: 0.027
  7. Differences Between Ipsilateral and Contralateral Early Parenchymal Enhancement Kinetics Predict Response of Breast Cancer to Neoadjuvant Therapy. Acad Radiol. 2022 10; 29(10):1469-1479.
    View in: PubMed
    Score: 0.027
  8. Validation of Prostate Tissue Composition by Using Hybrid Multidimensional MRI: Correlation with Histologic Findings. Radiology. 2022 02; 302(2):368-377.
    View in: PubMed
    Score: 0.026
  9. High spectral and spatial resolution MRI of prostate cancer: a pilot study. Magn Reson Med. 2021 09; 86(3):1505-1513.
    View in: PubMed
    Score: 0.025
  10. Signal intensity form of the Tofts model for quantitative analysis of prostate dynamic contrast enhanced MRI data. Phys Med Biol. 2021 01 22; 66(2):025002.
    View in: PubMed
    Score: 0.025
  11. A compact solution for estimation of physiological parameters from ultrafast prostate dynamic contrast enhanced MRI. Phys Med Biol. 2019 08 07; 64(15):155012.
    View in: PubMed
    Score: 0.022
  12. Low-dose imaging technique (LITE) MRI: initial experience in breast imaging. Br J Radiol. 2019 Nov; 92(1103):20190302.
    View in: PubMed
    Score: 0.022
  13. Use of Indicator Dilution Principle to Evaluate Accuracy of Arterial Input Function Measured With Low-Dose Ultrafast Prostate Dynamic Contrast-Enhanced MRI. Tomography. 2019 06; 5(2):260-265.
    View in: PubMed
    Score: 0.022
  14. Feasibility of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using Low-Dose Gadolinium: Comparative Performance With Standard Dose in Prostate Cancer Diagnosis. Invest Radiol. 2018 10; 53(10):609-615.
    View in: PubMed
    Score: 0.021
  15. Comparison of arterial input functions measured from ultra-fast dynamic contrast enhanced MRI and dynamic contrast enhanced computed tomography in prostate cancer patients. Phys Med Biol. 2018 01 30; 63(3):03NT01.
    View in: PubMed
    Score: 0.020
  16. Dynamic field-of-view imaging to increase temporal resolution in the early phase of contrast media uptake in breast DCE-MRI: A feasibility study. Med Phys. 2018 Mar; 45(3):1050-1058.
    View in: PubMed
    Score: 0.020
  17. MRI ductography of contrast agent distribution and leakage in normal mouse mammary ducts and ducts with in situ cancer. Magn Reson Imaging. 2017 07; 40:48-52.
    View in: PubMed
    Score: 0.019
  18. Fast bilateral breast coverage with high spectral and spatial resolution (HiSS) MRI at 3T. J Magn Reson Imaging. 2017 11; 46(5):1341-1348.
    View in: PubMed
    Score: 0.019
  19. Kinetic Analysis of Benign and Malignant Breast Lesions With Ultrafast Dynamic Contrast-Enhanced MRI: Comparison With Standard Kinetic Assessment. AJR Am J Roentgenol. 2016 Nov; 207(5):1159-1166.
    View in: PubMed
    Score: 0.018
  20. Ultrafast Bilateral DCE-MRI of the Breast with Conventional Fourier Sampling: Preliminary Evaluation of Semi-quantitative Analysis. Acad Radiol. 2016 09; 23(9):1137-44.
    View in: PubMed
    Score: 0.018
  21. Arterial input functions (AIFs) measured directly from arteries with low and standard doses of contrast agent, and AIFs derived from reference tissues. Magn Reson Imaging. 2016 Feb; 34(2):197-203.
    View in: PubMed
    Score: 0.017
  22. MRI accurately identifies early murine mammary cancers and reliably differentiates between in situ and invasive cancer: correlation of MRI with histology. NMR Biomed. 2015 Sep; 28(9):1078-86.
    View in: PubMed
    Score: 0.017
  23. B1 and T1 mapping of the breast with a reference tissue method. Magn Reson Med. 2016 Apr; 75(4):1565-73.
    View in: PubMed
    Score: 0.017
  24. Comparison of dynamic contrast-enhanced MRI parameters of breast lesions at 1.5 and 3.0?T: a pilot study. Br J Radiol. 2015 May; 88(1049):20150021.
    View in: PubMed
    Score: 0.016
  25. X-ray fluorescence microscopy demonstrates preferential accumulation of a vanadium-based magnetic resonance imaging contrast agent in murine colonic tumors. Mol Imaging. 2015; 14.
    View in: PubMed
    Score: 0.016
  26. Hybrid multidimensional T(2) and diffusion-weighted MRI for prostate cancer detection. J Magn Reson Imaging. 2014 Apr; 39(4):781-8.
    View in: PubMed
    Score: 0.015
  27. Classification of breast lesions pre-contrast injection using water resonance lineshape analysis. NMR Biomed. 2013 May; 26(5):569-77.
    View in: PubMed
    Score: 0.014
  28. Non-contrast enhanced MRI for evaluation of breast lesions: comparison of non-contrast enhanced high spectral and spatial resolution (HiSS) images versus contrast enhanced fat-suppressed images. Acad Radiol. 2011 Dec; 18(12):1467-74.
    View in: PubMed
    Score: 0.013
  29. In vivo MRI of early stage mammary cancers and the normal mouse mammary gland. NMR Biomed. 2011 Aug; 24(7):880-7.
    View in: PubMed
    Score: 0.012
  30. Echo-planar spectroscopic imaging (EPSI) of the water resonance structure in human breast using sensitivity encoding (SENSE). Magn Reson Med. 2010 Jun; 63(6):1557-63.
    View in: PubMed
    Score: 0.012
  31. Fourier component imaging of water resonance in the human breast provides markers for malignancy. Phys Med Biol. 2009 Oct 07; 54(19):5767-79.
    View in: PubMed
    Score: 0.011
  32. Clinical implementation of a multislice high spectral and spatial resolution-based MRI sequence to achieve unilateral full-breast coverage. Magn Reson Imaging. 2010 Jan; 28(1):16-21.
    View in: PubMed
    Score: 0.011
  33. A new approach to analysis of the impulse response function (IRF) in dynamic contrast-enhanced MRI (DCEMRI): a simulation study. Magn Reson Med. 2009 Jul; 62(1):229-39.
    View in: PubMed
    Score: 0.011
  34. Pure ductal carcinoma in situ: kinetic and morphologic MR characteristics compared with mammographic appearance and nuclear grade. Radiology. 2007 Dec; 245(3):684-91.
    View in: PubMed
    Score: 0.010
  35. Fat suppression with spectrally selective inversion vs. high spectral and spatial resolution MRI of breast lesions: qualitative and quantitative comparisons. J Magn Reson Imaging. 2006 Dec; 24(6):1311-5.
    View in: PubMed
    Score: 0.009
  36. High spectral and spatial resolution MRI of breast lesions: preliminary clinical experience. AJR Am J Roentgenol. 2006 Jan; 186(1):30-7.
    View in: PubMed
    Score: 0.009
  37. Comparison of synthesized and acquired high b-value diffusion-weighted MRI for detection of prostate cancer. Cancer Imaging. 2024 Jul 08; 24(1):89.
    View in: PubMed
    Score: 0.008
  38. Fourier components of inhomogeneously broadened water resonances in breast: a new source of MRI contrast. Magn Reson Med. 2004 Jul; 52(1):193-6.
    View in: PubMed
    Score: 0.008
  39. The effect of varying spectral resolution on the quality of high spectral and spatial resolution magnetic resonance images of the breast. J Magn Reson Imaging. 2003 Oct; 18(4):442-8.
    View in: PubMed
    Score: 0.007
  40. Multi-model sequential analysis of MRI data for microstructure prediction in heterogeneous tissue. Sci Rep. 2023 10 01; 13(1):16486.
    View in: PubMed
    Score: 0.007
  41. Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers. Abdom Radiol (NY). 2023 10; 48(10):3216-3228.
    View in: PubMed
    Score: 0.007
  42. Reduction of spectral ghost artifacts in high-resolution echo-planar spectroscopic imaging of water and fat resonances. Magn Reson Med. 2003 Jun; 49(6):1113-20.
    View in: PubMed
    Score: 0.007
  43. An Interactive App with Multi-parametric MRI - Whole-Mount Histology Correlation for Enhanced Prostate MRI Training of Radiology Residents. Acad Radiol. 2023 09; 30 Suppl 1:S21-S29.
    View in: PubMed
    Score: 0.007
  44. Using high spectral and spatial resolution bold MRI to choose the optimal oxygenating treatment for individual cancer patients. Adv Exp Med Biol. 2003; 530:433-40.
    View in: PubMed
    Score: 0.007
  45. Towards Patient-Specific Optimization of Neoadjuvant Treatment Protocols for Breast Cancer Based on Image-Guided Fluid Dynamics. IEEE Trans Biomed Eng. 2022 11; 69(11):3334-3344.
    View in: PubMed
    Score: 0.007
  46. Safely reducing unnecessary benign breast biopsies by applying non-mass and DWI directional variance filters to ADC thresholding. BMC Med Imaging. 2022 09 29; 22(1):171.
    View in: PubMed
    Score: 0.007
  47. Breast MR imaging with high spectral and spatial resolutions: preliminary experience. Radiology. 2002 Aug; 224(2):577-85.
    View in: PubMed
    Score: 0.007
  48. Spectrally inhomogeneous effects of contrast agents in breast lesion detected by high spectral and spatial resolution MRI. Acad Radiol. 2002 Aug; 9 Suppl 2:S352-4.
    View in: PubMed
    Score: 0.007
  49. Comparing Radiologist Performance in Diagnosing Clinically Significant Prostate Cancer with Multiparametric versus Hybrid Multidimensional MRI. Radiology. 2022 11; 305(2):399-407.
    View in: PubMed
    Score: 0.007
  50. Physically implausible signals as a quantitative quality assessment metric in prostate diffusion-weighted MR imaging. Abdom Radiol (NY). 2022 07; 47(7):2500-2508.
    View in: PubMed
    Score: 0.007
  51. Histological validation of prostate tissue composition measurement using hybrid multi-dimensional MRI: agreement with pathologists' measures. Abdom Radiol (NY). 2022 02; 47(2):801-813.
    View in: PubMed
    Score: 0.007
  52. Enhancement-constrained acceleration: A robust reconstruction framework in breast DCE-MRI. PLoS One. 2021; 16(10):e0258621.
    View in: PubMed
    Score: 0.006
  53. Can Pre-treatment Quantitative Multi-parametric MRI Predict the Outcome of Radiotherapy in Patients with Prostate Cancer? Acad Radiol. 2022 07; 29(7):977-985.
    View in: PubMed
    Score: 0.006
  54. Effectiveness of Dynamic Contrast Enhanced MRI with a Split Dose of Gadoterate Meglumine for Detection of Prostate Cancer. Acad Radiol. 2022 06; 29(6):796-803.
    View in: PubMed
    Score: 0.006
  55. An in silico validation framework for quantitative DCE-MRI techniques based on a dynamic digital phantom. Med Image Anal. 2021 10; 73:102186.
    View in: PubMed
    Score: 0.006
  56. Robustness of radiomic features of benign breast lesions and hormone receptor positive/HER2-negative cancers across DCE-MR magnet strengths. Magn Reson Imaging. 2021 10; 82:111-121.
    View in: PubMed
    Score: 0.006
  57. Differentiation of nonmetastatic and metastatic rodent prostate tumors with high spectral and spatial resolution MRI. Magn Reson Med. 2001 Jun; 45(6):1046-55.
    View in: PubMed
    Score: 0.006
  58. T2*-weighted MRI as a non-contrast-enhanced method for assessment of focal laser ablation zone extent in prostate cancer thermotherapy. Eur Radiol. 2021 Jan; 31(1):325-332.
    View in: PubMed
    Score: 0.006
  59. Discrimination of benign from malignant breast lesions in dense breasts with model-based analysis of regions-of-interest using directional diffusion-weighted images. BMC Med Imaging. 2020 06 09; 20(1):61.
    View in: PubMed
    Score: 0.006
  60. Patient-Specific Characterization of Breast Cancer Hemodynamics Using Image-Guided Computational Fluid Dynamics. IEEE Trans Med Imaging. 2020 09; 39(9):2760-2771.
    View in: PubMed
    Score: 0.006
  61. Effect of Echo Times on Prostate Cancer Detection on T2-Weighted Images. Acad Radiol. 2020 11; 27(11):1555-1563.
    View in: PubMed
    Score: 0.006
  62. Revisiting quantitative multi-parametric MRI of benign prostatic hyperplasia and its differentiation from transition zone cancer. Abdom Radiol (NY). 2019 06; 44(6):2233-2243.
    View in: PubMed
    Score: 0.005
  63. Diagnosis of Prostate Cancer by Use of MRI-Derived Quantitative Risk Maps: A Feasibility Study. AJR Am J Roentgenol. 2019 08; 213(2):W66-W75.
    View in: PubMed
    Score: 0.005
  64. Comparison of T2-Weighted Imaging, DWI, and Dynamic Contrast-Enhanced MRI for Calculation of Prostate Cancer Index Lesion Volume: Correlation With Whole-Mount Pathology. AJR Am J Roentgenol. 2019 02; 212(2):351-356.
    View in: PubMed
    Score: 0.005
  65. Multiparametric MRI Features and Pathologic Outcome of Wedge-Shaped Lesions in the Peripheral Zone on T2-Weighted Images of the Prostate. AJR Am J Roentgenol. 2019 01; 212(1):124-129.
    View in: PubMed
    Score: 0.005
  66. Quantitative analysis of vascular properties derived from ultrafast DCE-MRI to discriminate malignant and benign breast tumors. Magn Reson Med. 2019 03; 81(3):2147-2160.
    View in: PubMed
    Score: 0.005
  67. Evaluation of Focal Laser Ablation of Prostate Cancer Using High Spectral and Spatial Resolution Imaging: A Pilot Study. J Magn Reson Imaging. 2019 05; 49(5):1374-1380.
    View in: PubMed
    Score: 0.005
  68. Ultrafast Dynamic Contrast-Enhanced Breast MRI: Kinetic Curve Assessment Using Empirical Mathematical Model Validated with Histological Microvessel Density. Acad Radiol. 2019 07; 26(7):e141-e149.
    View in: PubMed
    Score: 0.005
  69. Intensive Surveillance with Biannual Dynamic Contrast-Enhanced Magnetic Resonance Imaging Downstages Breast Cancer in BRCA1 Mutation Carriers. Clin Cancer Res. 2019 03 15; 25(6):1786-1794.
    View in: PubMed
    Score: 0.005
  70. Fast Temporal Resolution Dynamic Contrast-Enhanced MRI: Histogram Analysis Versus Visual Analysis for Differentiating Benign and Malignant Breast Lesions. AJR Am J Roentgenol. 2018 10; 211(4):933-939.
    View in: PubMed
    Score: 0.005
  71. MRI Findings After MRI-Guided Focal Laser Ablation of Prostate Cancer. AJR Am J Roentgenol. 2018 09; 211(3):595-604.
    View in: PubMed
    Score: 0.005
  72. Performance of T2 Maps in the Detection of Prostate Cancer. Acad Radiol. 2019 01; 26(1):15-21.
    View in: PubMed
    Score: 0.005
  73. Fast spectroscopic imaging of water and fat resonances to improve the quality of MR images. Acad Radiol. 1998 Apr; 5(4):269-75.
    View in: PubMed
    Score: 0.005
  74. Diagnosis of Prostate Cancer with Noninvasive Estimation of Prostate Tissue Composition by Using Hybrid Multidimensional MR Imaging: A Feasibility Study. Radiology. 2018 06; 287(3):864-873.
    View in: PubMed
    Score: 0.005
  75. Performance of Ultrafast DCE-MRI for Diagnosis of Prostate Cancer. Acad Radiol. 2018 03; 25(3):349-358.
    View in: PubMed
    Score: 0.005
  76. Spectral characterization of tissues in high spectral and spatial resolution MR images: Implications for a classification-based synthetic CT algorithm. Med Phys. 2017 May; 44(5):1865-1875.
    View in: PubMed
    Score: 0.005
  77. Value of breast MRI for patients with a biopsy showing atypical ductal hyperplasia (ADH). J Magn Reson Imaging. 2017 12; 46(6):1738-1747.
    View in: PubMed
    Score: 0.005
  78. Dynamic Contrast-Enhanced Magnetic Resonance Imaging as a Pharmacodynamic Biomarker for Pazopanib in Metastatic Renal Carcinoma. Clin Genitourin Cancer. 2017 04; 15(2):207-212.
    View in: PubMed
    Score: 0.005
  79. Pilot Study of the Use of Hybrid Multidimensional T2-Weighted Imaging-DWI for the Diagnosis of Prostate Cancer and Evaluation of Gleason Score. AJR Am J Roentgenol. 2016 Sep; 207(3):592-8.
    View in: PubMed
    Score: 0.004
  80. Benign Conditions That Mimic Prostate Carcinoma: MR Imaging Features with Histopathologic Correlation. Radiographics. 2016 Jan-Feb; 36(1):162-75.
    View in: PubMed
    Score: 0.004
  81. Short-term reproducibility of apparent diffusion coefficient estimated from diffusion-weighted MRI of the prostate. Abdom Imaging. 2015 Oct; 40(7):2523-8.
    View in: PubMed
    Score: 0.004
  82. Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Rep. 2015 Sep; 16(9):1145-63.
    View in: PubMed
    Score: 0.004
  83. The renin-angiotensin system mediates EGF receptor-vitamin d receptor cross-talk in colitis-associated colon cancer. Clin Cancer Res. 2014 Nov 15; 20(22):5848-5859.
    View in: PubMed
    Score: 0.004
  84. High-resolution diffusion-weighted imaging of the prostate. AJR Am J Roentgenol. 2014 Jul; 203(1):85-90.
    View in: PubMed
    Score: 0.004
  85. Dynamic contrast-enhanced MR imaging features of the normal central zone of the prostate. Acad Radiol. 2014 May; 21(5):569-77.
    View in: PubMed
    Score: 0.004
  86. Prostate volumes derived from MRI and volume-adjusted serum prostate-specific antigen: correlation with Gleason score of prostate cancer. AJR Am J Roentgenol. 2013 Nov; 201(5):1041-8.
    View in: PubMed
    Score: 0.004
  87. Potential of computer-aided diagnosis of high spectral and spatial resolution (HiSS) MRI in the classification of breast lesions. J Magn Reson Imaging. 2014 Jan; 39(1):59-67.
    View in: PubMed
    Score: 0.004
  88. MR imaging-guided focal laser ablation for prostate cancer: phase I trial. Radiology. 2013 Jun; 267(3):932-40.
    View in: PubMed
    Score: 0.004
  89. Comparing post-operative human breast specimen radiograph and MRI in lesion margin and volume assessment. J Appl Clin Med Phys. 2012 Nov 08; 13(6):3802.
    View in: PubMed
    Score: 0.003
  90. Do we really need contrast agents? Eur J Radiol. 2012 Sep; 81 Suppl 1:S99-100.
    View in: PubMed
    Score: 0.003
  91. Monitoring anti-angiogenic therapy in colorectal cancer murine model using dynamic contrast-enhanced MRI: comparing pixel-by-pixel with region of interest analysis. Technol Cancer Res Treat. 2013 Feb; 12(1):71-8.
    View in: PubMed
    Score: 0.003
  92. Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging. Eur Radiol. 2012 Jul; 22(7):1451-64.
    View in: PubMed
    Score: 0.003
  93. Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol. 2011 Dec; 197(6):1382-90.
    View in: PubMed
    Score: 0.003
  94. High-resolution MRI of excised human prostate specimens acquired with 9.4T in detection and identification of cancers: validation of a technique. J Magn Reson Imaging. 2011 Oct; 34(4):956-61.
    View in: PubMed
    Score: 0.003
  95. The diverse pathology and kinetics of mass, nonmass, and focus enhancement on MR imaging of the breast. J Magn Reson Imaging. 2011 Jun; 33(6):1382-9.
    View in: PubMed
    Score: 0.003
  96. P-31 spectroscopy study of response of superficial human tumors to therapy. Radiology. 1991 Apr; 179(1):149-53.
    View in: PubMed
    Score: 0.003
  97. Normal parenchymal enhancement patterns in women undergoing MR screening of the breast. Eur Radiol. 2011 Jul; 21(7):1374-82.
    View in: PubMed
    Score: 0.003
  98. Characterizing early contrast uptake of ductal carcinoma in situ with high temporal resolution dynamic contrast-enhanced MRI of the breast: a pilot study. Phys Med Biol. 2010 Oct 07; 55(19):N473-85.
    View in: PubMed
    Score: 0.003
  99. Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology. 2010 Dec; 257(3):715-23.
    View in: PubMed
    Score: 0.003
  100. The use of a reference tissue arterial input function with low-temporal-resolution DCE-MRI data. Phys Med Biol. 2010 Aug 21; 55(16):4871-83.
    View in: PubMed
    Score: 0.003
  101. Comparison of quantitative parameters in cervix cancer measured by dynamic contrast-enhanced MRI and CT. Magn Reson Med. 2010 Jun; 63(6):1601-9.
    View in: PubMed
    Score: 0.003
  102. The influence of temporal resolution in determining pharmacokinetic parameters from DCE-MRI data. Magn Reson Med. 2010 Mar; 63(3):811-6.
    View in: PubMed
    Score: 0.003
  103. Relating dose of contrast media administered to uptake and washout of malignant lesions on DCEMRI of the breast. Acad Radiol. 2010 Jan; 17(1):24-30.
    View in: PubMed
    Score: 0.003
  104. Response of tumors to therapy studied by 31P magnetic resonance spectroscopy. Invest Radiol. 1989 Dec; 24(12):1020-3.
    View in: PubMed
    Score: 0.003
  105. Kinetic curves of malignant lesions are not consistent across MRI systems: need for improved standardization of breast dynamic contrast-enhanced MRI acquisition. AJR Am J Roentgenol. 2009 Sep; 193(3):832-9.
    View in: PubMed
    Score: 0.003
  106. Use of radio-frequency field gradients to image blood flow and perfusion in vivo. Radiology. 1989 Aug; 172(2):363-6.
    View in: PubMed
    Score: 0.003
  107. Characterization of response to radiation mediated gene therapy by means of multimodality imaging. Magn Reson Med. 2009 Aug; 62(2):348-56.
    View in: PubMed
    Score: 0.003
  108. New vanadium-based magnetic resonance imaging probes: clinical potential for early detection of cancer. J Biol Inorg Chem. 2009 Nov; 14(8):1187-97.
    View in: PubMed
    Score: 0.003
  109. Quantitative analysis of dynamic contrast enhanced MRI for assessment of bowel inflammation in Crohn's disease pilot study. Acad Radiol. 2009 Oct; 16(10):1223-30.
    View in: PubMed
    Score: 0.003
  110. Reproducibility assessment of a multiple reference tissue method for quantitative dynamic contrast enhanced-MRI analysis. Magn Reson Med. 2009 Apr; 61(4):851-9.
    View in: PubMed
    Score: 0.003
  111. Evaluation of diffusion-weighted MR imaging for detection of bowel inflammation in patients with Crohn's disease. Acad Radiol. 2009 May; 16(5):597-603.
    View in: PubMed
    Score: 0.003
  112. Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol. 2008 Oct 01; 26(28):4572-8.
    View in: PubMed
    Score: 0.003
  113. DCEMRI of breast lesions: is kinetic analysis equally effective for both mass and nonmass-like enhancement? Med Phys. 2008 Jul; 35(7):3102-9.
    View in: PubMed
    Score: 0.003
  114. Differentiation between benign and malignant breast lesions detected by bilateral dynamic contrast-enhanced MRI: a sensitivity and specificity study. Magn Reson Med. 2008 Apr; 59(4):747-54.
    View in: PubMed
    Score: 0.003
  115. Multiple reference tissue method for contrast agent arterial input function estimation. Magn Reson Med. 2007 Dec; 58(6):1266-75.
    View in: PubMed
    Score: 0.002
  116. A selective small molecule inhibitor of c-Met, PHA665752, inhibits tumorigenicity and angiogenesis in mouse lung cancer xenografts. Cancer Res. 2007 Apr 15; 67(8):3529-34.
    View in: PubMed
    Score: 0.002
  117. Diagnosis of suspicious breast lesions using an empirical mathematical model for dynamic contrast-enhanced MRI. Magn Reson Imaging. 2007 Jun; 25(5):593-603.
    View in: PubMed
    Score: 0.002
  118. A single acquisition localization technique. Magn Reson Med. 1986 Apr; 3(2):341-5.
    View in: PubMed
    Score: 0.002
  119. Anatomical and functional brain imaging using high-resolution echo-planar spectroscopic imaging at 1.5 Tesla. NMR Biomed. 2005 Jun; 18(4):235-41.
    View in: PubMed
    Score: 0.002
  120. Semiquantitative analysis of dynamic contrast enhanced MRI in cancer patients: Variability and changes in tumor tissue over time. J Magn Reson Imaging. 2004 Jul; 20(1):122-8.
    View in: PubMed
    Score: 0.002
  121. Phase II study of the Flk-1 tyrosine kinase inhibitor SU5416 in advanced melanoma. Clin Cancer Res. 2004 Jun 15; 10(12 Pt 1):4048-54.
    View in: PubMed
    Score: 0.002
  122. MRI of the tumor microenvironment. J Magn Reson Imaging. 2002 Oct; 16(4):430-50.
    View in: PubMed
    Score: 0.002
  123. Applications of magnetic resonance in model systems: cancer therapeutics. Neoplasia. 2000 Jan-Apr; 2(1-2):152-65.
    View in: PubMed
    Score: 0.001
  124. Measurement of differences in pO2 in response to perfluorocarbon/carbogen in FSa and NFSa murine fibrosarcomas with low-frequency electron paramagnetic resonance oximetry. Radiat Res. 1996 May; 145(5):610-8.
    View in: PubMed
    Score: 0.001
  125. Hepatic cancers and their response to chemoembolization therapy. Quantitative image-guided 31P magnetic resonance spectroscopy. Invest Radiol. 1992 Jun; 27(6):456-64.
    View in: PubMed
    Score: 0.001
  126. Image-guided 31P magnetic resonance spectroscopy of normal and transplanted human kidneys. Kidney Int. 1990 Aug; 38(2):294-300.
    View in: PubMed
    Score: 0.001
  127. Comparison of 31P MRS and 1H MRI at 1.5 and 2.0 T. Magn Reson Med. 1990 Feb; 13(2):228-38.
    View in: PubMed
    Score: 0.001
  128. Non-invasive quantitation of human liver metabolites using image-guided 31P magnetic resonance spectroscopy. NMR Biomed. 1990 Feb; 3(1):17-22.
    View in: PubMed
    Score: 0.001
  129. Abnormalities of the liver evaluated by 31P MRS. Invest Radiol. 1989 Dec; 24(12):980-4.
    View in: PubMed
    Score: 0.001
  130. Clinical magnetic resonance spectroscopy of brain, heart, liver, kidney, and cancer. A quantitative approach. NMR Biomed. 1989 Dec; 2(5-6):290-7.
    View in: PubMed
    Score: 0.001
  131. Nuclear magnetic resonance imaging-guided phosphorus-31 spectroscopy of the human heart. J Am Coll Cardiol. 1988 Dec; 12(6):1449-55.
    View in: PubMed
    Score: 0.001
  132. Application of image-guided surface coil P-31 MR spectroscopy to human liver, heart, and kidney. Radiology. 1988 Nov; 169(2):541-7.
    View in: PubMed
    Score: 0.001
Connection Strength

The connection strength for concepts is the sum of the scores for each matching publication.

Publication scores are based on many factors, including how long ago they were written and whether the person is a first or senior author.